Chemical waste released into a river from a factory at x = 0 has concentration w(z,t). The
amount of the chemical released is u(0,¢) = C(t). In the river, the chemical is advected in = > 0 and
depleted according to

up + v(x)uy, = —pu, (1)
where v(x) is the river flow speed and p > 0 is the (constant) depletion rate. The river was clean
initially, u(z,0) = 0, and the total amount of pollutant in it is

U(t) = /0 " e t)da.

(i) Provide a formula for u(z, s) = L{u(x,t)} in terms of C(s) = L{C(¢)} and
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and hence write down a solution for u(x,t) in terms of C(t) and T'(x).
By monitoring the river, the factory attempts to control the environmental impact of the chemical
release by demanding that C(t) = P(t) — U(t), for some base production function P(t) > 0.

(ii) Provide a formula for C(s).
Now take v(z) = 3 + z.

(7i) Given that E{fg’ f(t —7)g(r)dr} = f(s)g(s), write down the solution for C(t) as a convolution
integral.

For the last three parts, consider the case that P(t) = constant:

(iv) Provide explicit solutions for C(s), C(t) and u(z, )

(v) Establish the limits of C(¢) and wu(z,t) for t — oo, and compare these limits with the steady
solution v = w(x) to (1).

(vi) Compare the limits found in (v) with the limits of sC(s) and su(z,s) for s — 0, rationalizing
from the definition of the Laplace transform why they are related, or if not, why they are not.

Solution:
Laplace transforming the PDE:
(s + p)u+vu, =0, or  w=C(s)e (HWT@)
given that u(0,s) = C(s) and from the definition of T'(x). The inverse transform, using the second

shifting theorem, is
w(z,t) = e MT@CO — T(2))H(t — T(x)).

Laplace transforming U(t) and C(t) = P(t) — U(t), then plugging in the solution for @(z, s) gives
oo -1
C(s) = P(s) [1 —i—/ e(SJr”)T(w)dx] :
0
For v(z) = % +z, T =1In(1 4 2z) and we find
t 1
Cs)=—————=P— —— = C(t) = P(t) — 2/ P(t —7)e” W27 qr.
0

For the case P = constant, we arrive at

Oy = Pletr=b C(m— 1t e
C(S)_s(wu—%)’ C(t)_< )P




and
1

w(z,t) = ——— [(u —1)(1 4 22) 7 4 Le 21 4 2:5)—5] H(t —In(1 + 2z)).

In the special case that = %,

C=P1-1) & u=P(+22)"2{1 -1t —In(1 +22)]}H(t — In(1 + 22)).

For p < %, the solutions diverge as ¢ — oo, implying no limits. Admittedly, this result is

suspicious: the concentration first becomes negative before diverging, implying that the model breaks
down (concentration should be positive), when C(t) reaches zero.

When p > %, on the other hand,
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The steady solution satisfies vw, = —pw. As long as p > 1, this implies

o Pu-1)
g

o0
w=C(1+2x)™" & C=P [1—1—/ (1+2x)“d1} ;
0

there is no steady state for p < 1. The limits of v and C therefore agree with the steady solution,
but only when g > 1, a curious result originating from the convergence of the spatial integral in U (t)
with and without time-dependence.

The limits for 4 > 1 are precisely equal to the limits of sC(s) and su(z,s) for s — 0. Denoting
foo as the limit of f(t) for t — oo, and assuming this to be finite, we observe that

sf(s) — f(0) = /000 e_St;i—J;dt — foo — f(0) for s = 0,

establishing the origin of the coincidence. If fo, diverges, then we cannot take the limit s — 0 to
establish the result, avoiding any coincidence.



