
Chemical waste released into a river from a factory at x = 0 has concentration u(x, t). The
amount of the chemical released is u(0, t) = C(t). In the river, the chemical is advected in x > 0 and
depleted according to

ut + v(x)ux = −µu, (1)

where v(x) is the river flow speed and µ > 0 is the (constant) depletion rate. The river was clean
initially, u(x, 0) = 0, and the total amount of pollutant in it is

U(t) =

∫ ∞
0

u(x, t)dx.

(i) Provide a formula for u(x, s) = L{u(x, t)} in terms of C(s) = L{C(t)} and

T (x) =

∫ x

0

dx̂

v(x̂)
,

and hence write down a solution for u(x, t) in terms of C(t) and T (x).
By monitoring the river, the factory attempts to control the environmental impact of the chemical
release by demanding that C(t) = P (t)− U(t), for some base production function P (t) > 0.
(ii) Provide a formula for C(s).
Now take v(x) = 1

2 + x.

(ii) Given that L{
∫ t
0 f(t − τ)g(τ)dτ} = f(s)g(s), write down the solution for C(t) as a convolution

integral.
For the last three parts, consider the case that P (t) = constant:
(iv) Provide explicit solutions for C(s), C(t) and u(x, t).
(v) Establish the limits of C(t) and u(x, t) for t → ∞, and compare these limits with the steady
solution u = w(x) to (1).
(vi) Compare the limits found in (v) with the limits of sC(s) and su(x, s) for s → 0, rationalizing
from the definition of the Laplace transform why they are related, or if not, why they are not.

Solution:

Laplace transforming the PDE:

(s+ µ)u+ vux = 0, or u = C(s)e−(s+µ)T (x),

given that u(0, s) = C(s) and from the definition of T (x). The inverse transform, using the second
shifting theorem, is

u(x, t) = e−µT (x)C(t− T (x))H(t− T (x)).

Laplace transforming U(t) and C(t) = P (t)− U(t), then plugging in the solution for u(x, s) gives

C(s) = P (s)

[
1 +

∫ ∞
0

e−(s+µ)T (x)dx

]−1
.

For v(x) = 1
2 + x, T = ln(1 + 2x) and we find

C(s) =
P (s+ µ− 1)

(s+ µ− 1
2)

= P − P

2(s+ µ− 1
2)

=⇒ C(t) = P (t)− 1
2

∫ t

0
P (t− τ)e−(µ−

1
2
)τdτ.

For the case P = constant, we arrive at

C(s) =
P (s+ µ− 1)

s(s+ µ− 1
2)
, C(t) =

(
µ− 1 + 1

2e
−(µ− 1

2
)t

µ− 1
2

)
P

1



and

u(x, t) =
P

µ− 1
2

[
(µ− 1)(1 + 2x)−µ + 1

2e
−(µ− 1

2
)t(1 + 2x)−

1
2

]
H(t− ln(1 + 2x)).

In the special case that µ = 1
2 ,

C = P (1− 1
2 t) & u = P (1 + 2x)−

1
2 {1− 1

2 [t− ln(1 + 2x)]}H(t− ln(1 + 2x)).

For µ ≤ 1
2 , the solutions diverge as t → ∞, implying no limits. Admittedly, this result is

suspicious: the concentration first becomes negative before diverging, implying that the model breaks
down (concentration should be positive), when C(t) reaches zero.

When µ > 1
2 , on the other hand,

C → P (µ− 1)

µ− 1
2

& u→ P (µ− 1)(1 + 2x)−µ

µ− 1
2

.

The steady solution satisfies vwx = −µw. As long as µ > 1, this implies

w = C(1 + 2x)−µ & C = P

[
1 +

∫ ∞
0

(1 + 2x)−µdx

]−1
=
P (µ− 1)

µ− 1
2

;

there is no steady state for µ ≤ 1. The limits of u and C therefore agree with the steady solution,
but only when µ > 1, a curious result originating from the convergence of the spatial integral in U(t)
with and without time-dependence.

The limits for µ > 1
2 are precisely equal to the limits of sC(s) and su(x, s) for s → 0. Denoting

f∞ as the limit of f(t) for t→∞, and assuming this to be finite, we observe that

sf(s)− f(0) =

∫ ∞
0

e−st
df

dt
dt→ f∞ − f(0) for s→ 0,

establishing the origin of the coincidence. If f∞ diverges, then we cannot take the limit s → 0 to
establish the result, avoiding any coincidence.
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