## MATH 101 V01 - ASSIGNMENT 9

## Solutions

1. Solve the initial-value problems:
(a) $y^{\prime}=y^{2}, \quad y(0)=1$.
(b) $y^{\prime}=y^{2}, \quad y(0)=0$.
(c) $\frac{d P}{d t}=\sqrt{P t}, \quad P(1)=2$.

Solution:
(a) The first-order differential equation $d y / d x=y^{2}$ is separable: write it as

$$
y^{-2} d y=1 d x
$$

then integrate (i.e. find the antiderivatives of) both sides,

$$
\int y^{-2} d y=\int 1 d x
$$

to get

$$
-\frac{1}{y}=x+C
$$

where $C$ is an arbitrary constant. It is convenient (but not necessary) to use the initial condition at this point (rather than waiting until after solving for $y$ ) to solve for $C$ : when $x=0$ we must have $y=1$, so substituting in these values gives

$$
-\frac{1}{1}=0+C
$$

so

$$
C=-1 \quad \text { and } \quad-\frac{1}{y}=x-1
$$

Now solve for $y$ to get

$$
y(x)=\frac{1}{1-x}
$$

(b) The differential equation is the same as in (a), but the separation of variables method doesn't work to find $C$ (division by 0 is not defined). By plotting the direction field, or from plotting the phase portrait (this differential equation is autonomous), we "guess" there is a constant solution $y(x)=0$ for all $x$. Then we must check that it satisfies the given initial condition $y(0)=0$, which is obvious, also that the function $y(x)=0$ satisfies the differential equation $y^{\prime}=y^{2}$ when it is substituted in, which it clearly does $\left(0=0^{2}\right)$. So the solution to the initial-value problem is

$$
y(x)=0 \quad \text { for }-\infty<x<\infty
$$

Another way to find this solution is to look for the equilibrium, solution(s) of the differential equation by setting $y^{\prime}=0$ (this is what $y^{\prime}$ would be if $y(x)=$ constant) and then solving for $y$.
(This differential equation is nonlinear, so there is no guarantee that there is a general solution, i.e. an expression for the solution that is guaranteed to give all solutions of the differential equation that exist. In this example, $y(x)=-1 /(x+C)$ is not a general solution, because not every solution of the differential equation can be expressed in this form.)
(c) The 1st-order differential equation $d P / d t=\sqrt{P t}=\sqrt{P} \sqrt{t}$ is separable: write it as

$$
P^{-1 / 2} d P=t^{1 / 2} d t
$$

then integrate (or find the antiderivatives of) both sides,

$$
\int P^{-1 / 2} d P=\int t^{1 / 2} d t
$$

to get

$$
2 \sqrt{P}=\frac{2}{3} t^{3 / 2}+C
$$

where $C$ is an arbitrary constant. It is convenient to use the initial condition at this point (rather than after solving for $P$ ) to solve for $C$ : when $t=1$ we must have $P=2$, so substituting these values into the line above give

$$
2 \sqrt{2}=\frac{2}{3} 1^{3 / 2}+C
$$

So

$$
C=2\left(\sqrt{2}-\frac{1}{3}\right) \quad \text { and } \quad 2 \sqrt{P}=\frac{2}{3} t^{3 / 2}+2\left(\sqrt{2}-\frac{1}{3}\right) .
$$

Now solve for $P$ to get

$$
P(t)=\left(\frac{1}{3} t^{3 / 2}+\sqrt{2}-\frac{1}{3}\right)^{2}
$$

(notice we must have $0<t<\infty$ for this solution to be valid).
2. A room containing $1000 \mathrm{~m}^{3}$ of air is originally free of carbon monoxide $(C O)$. Beginning at time $t=0$, smoke containing $4 \% C O$ (by volume) is blown into the room at the rate of $0.1 \mathrm{~m}^{3} / \mathrm{min}$, and the well circulated mixture leaves the room at the same rate. Find the time when the $C O$ concentration in the room reaches $0.012 \%$.

Solution: Let $y(t)$ be the volume of $C O$ in the room, in $\mathrm{m}^{3}$, where $t$ is measured in min. We want to know: for what $t$ does $y(t)=(0.00012)\left(1000 \mathrm{~m}^{3}\right)=0.12 \mathrm{~m}^{3}$ ? (Other approaches would be to let $y(t)$ be the percentage of $C O$ in the room, or the fraction of the total volume that is $C O$. The corresponding initial value problems will be slightly different.)
The differential equation for $y$ is

$$
\begin{aligned}
\frac{d y}{d t} & =(\text { rate in })-(\text { rate out }) \\
& =\left(\frac{4}{100}\right)\left(0.1 \mathrm{~m}^{3} / \mathrm{min}\right)-\left(\frac{y}{1000}\right)\left(0.1 \mathrm{~m}^{3} / \mathrm{min}\right) \\
& =0.004-0.0001 \mathrm{y} \mathrm{~m}^{3} / \mathrm{min}
\end{aligned}
$$

and the initial condition is

$$
y(0)=0 .
$$

The differential equation is both separable and linear, and can be solved with either of two methods. If we solve the differential equation $d y / d t=0.004-0.0001 y$ by separating variables,

$$
\frac{d y}{0.004-0.0001 y}=d t
$$

and integrating

$$
\int \frac{d y}{0.004-0.0001 y}=\int d t
$$

we get

$$
-10,000 \log (|0.004-0.0001 y|)=t+C
$$

where $C$ is an arbitrary constant, or

$$
\log (|0.004-0.0001 y|)=-0.0001 t+B
$$

where $B$ is another arbitrary constant $(B=-C / 10,000$ but this doesn't matter). Apply the exponential function

$$
|0.004-0.0001 y|=e^{B} e^{-0.0001 t}
$$

and remove the absolute value sign to get

$$
0.004-0.0001 y=A e^{-0.0001 t}
$$

where $A= \pm e^{B}$. Use the initial condition to solve for $A: y=0$ when $t=0$ gives

$$
A=0.004
$$

Substituting this value in for $A$ and then solving for $y$, we get

$$
y(t)=40-40 e^{-0.0001 t}
$$

Alternatively, we can use the integrating factor method for linear equations. Writing the differential equation as

$$
\frac{d y}{d t}+0.0001 y=0.004
$$

we let $P(t)=0.0001$ and $Q(t)=0.004$. Then an integrating factor is

$$
I(t)=e^{\int P(t) d t}=e^{0.0001 t}
$$

(or any nonzero constant multiple of this will also give a suitable integrating facror) so we multiply the differential equation by $I(t)$ and write the left-hand side as the derivative of a product (this is the reason we find an integrating factor!):

$$
\begin{aligned}
e^{0.0001 t} \frac{d y}{d t}+0.0001 e^{0.0001 t} y & =0.004 e^{0.0001 t} \\
\frac{d}{d t}\left[e^{0.0001 t} y\right] & =0.004 e^{0.0001 t}
\end{aligned}
$$

Now integrate (i.e. find the antiderivatives, the left-hand side is now easy) to get

$$
e^{0.0001 t} y=40 e^{0.0001 t}+A
$$

where $A$ is an arbitrary constant. Solving for $y$ gives the general solution

$$
y=40+A e^{-0.0001 t}
$$

Use the initial condition at $t=0$

$$
0=40+A
$$

to get $A=-40$ and the solution of the initial value problem is the same as obtained by separation of variables,

$$
y(t)=40-40 e^{-0.0001 t}
$$

Now setting $y(t)=0.12$ and solving the equation

$$
0.12=40-40 e^{-0.0001 t}
$$

for $t$, we get

$$
t=-10,000 \log \left(\frac{39.88}{40}\right) \approx 30.05 \quad \min
$$

3. (a) Evaluate the integral $\int_{0}^{1} x^{2}(1-x)^{7} d x$.
(b) Evaluate the integral $\int_{0}^{\pi} x^{2} \sin (x) d x$.
(c) Find the antiderivative (indefinite integral) $\int \cos (\theta) \cos ^{5}(\sin (\theta)) d \theta$.
(d) Find the antiderivative (indefinite integral) $\int \frac{1}{x^{2} \sqrt{1+x^{2}}} d x$.
(e) Find the antiderivative (indefinite integral) $\int \frac{3}{(x-1)^{2}(x+2)} d x$.

Solution:
(a) It is possible to expand the integrand $x^{2}(1-x)^{7}$ into a 9 th-degree polynomial, but this would be slow. Instead, make the substitution

$$
u=1-x ; \quad d u=-d x
$$

and transform the integral into something easier to evaluate,

$$
\begin{aligned}
\int_{0}^{1} x^{2}(1-x)^{7} d x & =-\int_{1}^{0}(1-u)^{2} u^{7} d u \\
& =\int_{0}^{1}\left(u^{7}-2 u^{8}+u^{9}\right) d u \\
& =\left.\left(\frac{1}{8} u^{8}-\frac{2}{9} u^{9}+\frac{1}{10} u^{10}\right)\right|_{0} ^{1} \\
& =\frac{1}{8}-\frac{2}{9}+\frac{1}{10} \quad\left(=\frac{1}{360}\right)
\end{aligned}
$$

(b) Integrate by parts,

$$
u=x^{2}, \quad d v=\sin (x) d x ; \quad d u=2 x d x, \quad v=-\cos (x)
$$

then

$$
\int_{0}^{\pi} x^{2} \sin (x) d x=-\left.x^{2} \cos (x)\right|_{0} ^{\pi}+2 \int_{0}^{\pi} x \cos (x) d x
$$

Integrate by parts a second time,

$$
u=x, \quad d v=\cos (x) d x ; \quad d u=d x, \quad v=\sin (x)
$$

then we get

$$
\begin{aligned}
-\left.x^{2} \cos (x)\right|_{0} ^{\pi}+2 \int_{0}^{\pi} x \cos (x) d x & =-\left.x^{2} \cos (x)\right|_{0} ^{\pi}+\left.2 x \sin (x)\right|_{0} ^{\pi}-2 \int_{0}^{\pi} \sin (x) d x \\
& =-\left.x^{2} \cos (x)\right|_{0} ^{\pi}+\left.2 x \sin (x)\right|_{0} ^{\pi}+\left.2 \cos (x)\right|_{0} ^{\pi} \\
& =-\pi^{2} \cos (\pi)+2 \pi \sin (\pi)+2 \cos (\pi)-2 \cos (0) \\
& =\pi^{2}-4
\end{aligned}
$$

where we have used $\cos (\pi)=-1, \sin (\pi)=0, \cos (0)=1$.
(c) Make the substitution

$$
u=\sin (\theta) ; \quad d u=\cos (\theta) d \theta
$$

then

$$
\begin{aligned}
\int \cos (\theta) \cos ^{5}(\sin (\theta)) d \theta & =\int \cos ^{5}(u) d u \\
& =\int \cos ^{4}(u) \cos (u) d u \\
& =\int\left[1-\sin ^{2}(u)\right]^{2} \cos (u) d u
\end{aligned}
$$

Make another substitution

$$
v=\sin (u) ; \quad d v=\cos (u) d u
$$

then

$$
\begin{aligned}
\int\left[1-\sin ^{2}(u)\right]^{2} \cos (u) d u & =\int\left(1-v^{2}\right)^{2} d v \\
& =\int\left(1-2 v^{2}+v^{4}\right) d v \\
& =v-\frac{2}{3} v^{3}+\frac{1}{5} v^{5}+C \\
& =\sin (u)-\frac{2}{3} \sin ^{3}(u)+\frac{1}{5} \sin ^{5}(u)+C \\
& =\sin (\sin (\theta))-\frac{2}{3} \sin ^{3}(\sin (\theta))+\frac{1}{5} \sin ^{5}(\sin (\theta))+C
\end{aligned}
$$

where $C$ is an arbitrary constant.
(d) Make the trigonometric substitution

$$
x=\tan (x) ; \quad d x=\sec ^{2}(x) d x, \quad \sqrt{1+x^{2}}=\sec (\theta)
$$

then we get

$$
\begin{aligned}
\int \frac{1}{x^{2} \sqrt{1+x^{2}}} d x & =\int \frac{1}{\tan ^{2}(\theta) \sec (\theta)} \sec ^{2}(\theta) d \theta \\
& =\int \frac{1}{\sin ^{2}(\theta)} \cos (\theta) d \theta
\end{aligned}
$$

Then we make the substitution

$$
u=\sin (\theta) ; \quad d u=\cos (\theta) d \theta
$$

and get

$$
\begin{aligned}
\int \frac{1}{\sin ^{2}(\theta)} \cos (\theta) d \theta & =\int \frac{1}{u^{2}} d u \\
& =-\frac{1}{u}+C \\
& =-\frac{1}{\sin (\theta)}+C \\
& =-\frac{\sqrt{1+x^{2}}}{x}+C
\end{aligned}
$$

where $C$ is an arbitrary constant.
(e) The integrand is a proper rational function, and we first make a partial fraction decomposition of the form

$$
\frac{3}{(x-1)^{2}(x+2)}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x+2}
$$

and multiply by $(x-1)^{2}(x+2)$ to get

$$
3=A(x-1)(x+2)+B(x+2)+C(x-1)^{2}
$$

for all $x$. To find $A, B, C$ quickly, we substitute $x=1$ to get $B=1$, then substitute $x=-2$ to get $C=\frac{1}{3}$. Then we can look at the coefficient of, say, $x^{2}$ and get $0=A+C$, so $A=-\frac{1}{3}$, and we have

$$
\frac{3}{(x-1)^{2}(x+2)}=-\frac{1}{3} \frac{1}{x-1}+\frac{1}{(x-1)^{2}}+\frac{1}{3} \frac{1}{x+2},
$$

and now we can calculate

$$
\begin{aligned}
\int \frac{3}{(x-1)^{2}(x+2)} d x & =-\frac{1}{3} \int \frac{1}{x-1} d x+\int \frac{1}{(x-1)^{2}} d x+\frac{1}{3} \int \frac{1}{x+2} d x \\
& =-\frac{1}{3} \log (|x-1|)-\frac{1}{x-1}+\frac{1}{3} \log (|x+2|)+C
\end{aligned}
$$

where $C$ is an arbitrary constant.

