
MATH 101 V01 – ASSIGNMENT 9
Solutions

1. Solve the initial-value problems:

(a) y′ = y2, y(0) = 1.

(b) y′ = y2, y(0) = 0.

(c) dP
dt =

√
Pt, P (1) = 2.

Solution:

(a) The first-order differential equation dy/dx = y2 is separable: write it as

y−2 dy = 1 dx

then integrate (i.e. find the antiderivatives of) both sides,∫
y−2 dy =

∫
1 dx

to get

−1

y
= x+ C,

where C is an arbitrary constant. It is convenient (but not necessary) to use the initial condition at this
point (rather than waiting until after solving for y) to solve for C: when x = 0 we must have y = 1, so
substituting in these values gives

−1

1
= 0 + C,

so

C = −1 and − 1

y
= x− 1.

Now solve for y to get

y(x) =
1

1− x
.

(b) The differential equation is the same as in (a), but the separation of variables method doesn’t work to
find C (division by 0 is not defined). By plotting the direction field, or from plotting the phase portrait
(this differential equation is autonomous), we “guess” there is a constant solution y(x) = 0 for all x.
Then we must check that it satisfies the given initial condition y(0) = 0, which is obvious, also that the
function y(x) = 0 satisfies the differential equation y′ = y2 when it is substituted in, which it clearly does
(0 = 02). So the solution to the initial-value problem is

y(x) = 0 for −∞ < x <∞.

Another way to find this solution is to look for the equilibrium, solution(s) of the differential equation by
setting y′ = 0 (this is what y′ would be if y(x) = constant) and then solving for y.

(This differential equation is nonlinear, so there is no guarantee that there is a general solution, i.e. an
expression for the solution that is guaranteed to give all solutions of the differential equation that exist.
In this example, y(x) = −1/(x+C) is not a general solution, because not every solution of the differential
equation can be expressed in this form.)

(c) The 1st-order differential equation dP/dt =
√
Pt =

√
P
√
t is separable: write it as

P−1/2 dP = t1/2 dt



then integrate (or find the antiderivatives of) both sides,∫
P−1/2 dP =

∫
t1/2 dt

to get
2
√
P = 2

3 t
3/2 + C,

where C is an arbitrary constant. It is convenient to use the initial condition at this point (rather than
after solving for P ) to solve for C: when t = 1 we must have P = 2, so substituting these values into the
line above give

2
√

2 = 2
3 13/2 + C,

so
C = 2

(√
2− 1

3

)
and 2

√
P = 2

3 t
3/2 + 2

(√
2− 1

3

)
.

Now solve for P to get

P (t) =
(

1
3 t

3/2 +
√

2− 1
3

)2
.

(notice we must have 0 < t <∞ for this solution to be valid).

2. A room containing 1000 m3 of air is originally free of carbon monoxide (CO). Beginning at time t = 0,
smoke containing 4% CO (by volume) is blown into the room at the rate of 0.1 m3/min, and the well
circulated mixture leaves the room at the same rate. Find the time when the CO concentration in the
room reaches 0.012%.

Solution: Let y(t) be the volume of CO in the room, in m3, where t is measured in min. We want to
know: for what t does y(t) = (0.00012)(1000 m3) = 0.12 m3? (Other approaches would be to let y(t) be
the percentage of CO in the room, or the fraction of the total volume that is CO. The corresponding
initial value problems will be slightly different.)

The differential equation for y is

dy

dt
= (rate in)− (rate out)

=
(

4
100

) (
0.1 m3/min

)
−
( y

1000

) (
0.1 m3/min

)
= 0.004− 0.0001y m3/min

and the initial condition is
y(0) = 0.

The differential equation is both separable and linear, and can be solved with either of two methods. If
we solve the differential equation dy/dt = 0.004− 0.0001y by separating variables,

dy

0.004− 0.0001y
= dt

and integrating ∫
dy

0.004− 0.0001y
=

∫
dt,

we get
−10, 000 log(|0.004− 0.0001y|) = t+ C

where C is an arbitrary constant, or

log(|0.004− 0.0001y|) = −0.0001t+B



where B is another arbitrary constant (B = −C/10, 000 but this doesn’t matter). Apply the exponential
function

|0.004− 0.0001y| = eBe−0.0001t

and remove the absolute value sign to get

0.004− 0.0001y = Ae−0.0001t

where A = ±eB . Use the initial condition to solve for A: y = 0 when t = 0 gives

A = 0.004.

Substituting this value in for A and then solving for y, we get

y(t) = 40− 40e−0.0001t.

Alternatively, we can use the integrating factor method for linear equations. Writing the differential
equation as

dy

dt
+ 0.0001 y = 0.004,

we let P (t) = 0.0001 and Q(t) = 0.004. Then an integrating factor is

I(t) = e
∫
P (t) dt = e0.0001 t

(or any nonzero constant multiple of this will also give a suitable integrating facror) so we multiply the
differential equation by I(t) and write the left-hand side as the derivative of a product (this is the reason
we find an integrating factor!):

e0.0001 t
dy

dt
+ 0.0001 e0.0001 t y = 0.004 e0.0001 t,

d

dt
[ e0.0001 t y ] = 0.004 e0.0001 t.

Now integrate (i.e. find the antiderivatives, the left-hand side is now easy) to get

e0.0001 t y = 40 e0.0001 t +A,

where A is an arbitrary constant. Solving for y gives the general solution

y = 40 +Ae−0.0001 t.

Use the initial condition at t = 0
0 = 40 +A,

to get A = −40 and the solution of the initial value problem is the same as obtained by separation of
variables,

y(t) = 40− 40e−0.0001t.

Now setting y(t) = 0.12 and solving the equation

0.12 = 40− 40e−0.0001t

for t, we get
t = −10, 000 log

(
39.88
40

)
≈ 30.05 min.



3. (a) Evaluate the integral

∫ 1

0

x2(1− x)7 dx.

(b) Evaluate the integral

∫ π

0

x2 sin(x) dx.

(c) Find the antiderivative (indefinite integral)

∫
cos(θ) cos5(sin(θ)) dθ.

(d) Find the antiderivative (indefinite integral)

∫
1

x2
√

1 + x2
dx.

(e) Find the antiderivative (indefinite integral)

∫
3

(x− 1)2(x+ 2)
dx.

Solution:

(a) It is possible to expand the integrand x2(1−x)7 into a 9th-degree polynomial, but this would be slow.
Instead, make the substitution

u = 1− x; du = −dx,

and transform the integral into something easier to evaluate,∫ 1

0

x2(1− x)7 dx = −
∫ 0

1

(1− u)2u7 du

=

∫ 1

0

(u7 − 2u8 + u9) du

=
(
1
8u

8 − 2
9u

9 + 1
10u

10
)∣∣1

0

= 1
8 −

2
9 + 1

10 (= 1
360 ).

(b) Integrate by parts,

u = x2, dv = sin(x) dx; du = 2x dx, v = − cos(x),

then ∫ π

0

x2 sin(x) dx = − x2 cos(x)
∣∣π
0

+ 2

∫ π

0

x cos(x) dx.

Integrate by parts a second time,

u = x, dv = cos(x) dx; du = dx, v = sin(x),

then we get

− x2 cos(x)
∣∣π
0

+ 2

∫ π

0

x cos(x) dx = − x2 cos(x)
∣∣π
0

+ 2 x sin(x)|π0 − 2

∫ π

0

sin(x) dx

= − x2 cos(x)
∣∣π
0

+ 2 x sin(x)|π0 + 2 cos(x)|π0
= −π2 cos(π) + 2π sin(π) + 2 cos(π)− 2 cos(0)

= π2 − 4,

where we have used cos(π) = −1, sin(π) = 0, cos(0) = 1.



(c) Make the substitution
u = sin(θ); du = cos(θ) dθ,

then ∫
cos(θ) cos5(sin(θ)) dθ =

∫
cos5(u) du

=

∫
cos4(u) cos(u) du

=

∫
[1− sin2(u)]2 cos(u) du.

Make another substitution
v = sin(u); dv = cos(u) du,

then ∫
[1− sin2(u)]2 cos(u) du =

∫
(1− v2)2 dv

=

∫
(1− 2v2 + v4) dv

= v − 2
3 v

3 + 1
5 v

5 + C

= sin(u)− 2
3 sin3(u) + 1

5 sin5(u) + C

= sin(sin(θ))− 2
3 sin3(sin(θ)) + 1

5 sin5(sin(θ)) + C,

where C is an arbitrary constant.

(d) Make the trigonometric substitution

x = tan(x); dx = sec2(x) dx,
√

1 + x2 = sec(θ),

then we get ∫
1

x2
√

1 + x2
dx =

∫
1

tan2(θ) sec(θ)
sec2(θ) dθ

=

∫
1

sin2(θ)
cos(θ) dθ.

Then we make the substitution
u = sin(θ); du = cos(θ) dθ,

and get ∫
1

sin2(θ)
cos(θ) dθ =

∫
1

u2
du

= − 1

u
+ C

= − 1

sin(θ)
+ C

= −
√

1 + x2

x
+ C,

where C is an arbitrary constant.



(e) The integrand is a proper rational function, and we first make a partial fraction decomposition of the
form

3

(x− 1)2(x+ 2)
=

A

x− 1
+

B

(x− 1)2
+

C

x+ 2

and multiply by (x− 1)2(x+ 2) to get

3 = A(x− 1)(x+ 2) +B(x+ 2) + C(x− 1)2

for all x. To find A, B, C quickly, we substitute x = 1 to get B = 1, then substitute x = −2 to get
C = 1

3 . Then we can look at the coefficient of, say, x2 and get 0 = A+ C, so A = − 1
3 , and we have

3

(x− 1)2(x+ 2)
= −1

3

1

x− 1
+

1

(x− 1)2
+

1

3

1

x+ 2
,

and now we can calculate∫
3

(x− 1)2(x+ 2)
dx = −1

3

∫
1

x− 1
dx+

∫
1

(x− 1)2
dx+

1

3

∫
1

x+ 2
dx

= − 1
3 log(|x− 1|)− 1

x− 1
+ 1

3 log(|x+ 2|) + C,

where C is an arbitrary constant.


