MATH 101 V01 - ASSIGNMENT 7

Solutions

1. (a) Use linear approximation to estimate $\log (0.98)$.
(b) Find the degree 2 Taylor polynomial $T_{2}(x)$, of the function $f(x)=x^{5 / 2}$, about $x=4$.
(c) Find the degree 3 Taylor polynomial $T_{3}(x)$, of the function $f(x)=\sqrt{x}$, about $x=4$.
(d) Find the degree 5 Taylor polynomial $T_{5}(x)$, of the function $f(x)=\cos (x)$, about $x=\frac{\pi}{3}$.
(e) Find the degree 8 Taylor polynomial $T_{8}(x)$, of the function $f(x)=\cos (x)$, about $x=0$ (a Taylor polynomial about $x=0$ is called a Maclaurin polynomial).

Solution: For all parts, we use the formula for the Taylor polynomial $T_{n}(x)$.
(a) Let $f(x)=\log (x), c=1, n=1$. Then

$$
f(x)=\log (x), \quad f^{\prime}(x)=\frac{1}{x}
$$

and evaluating at $x=c=1$, we get

$$
f(1)=0, \quad f^{\prime}(1)=1,
$$

and the linear approximation of $\log (x)$ about $x=1$ is

$$
L(x)=T_{1}(x)=f(1)+f^{\prime}(1)(x-1)=0+(x-1)=x-1 .
$$

Then $L(0.98)=0.98-1=-0.02$, So we estimate

$$
\log (0.98) \approx-0.02
$$

(The actual value of $\log (0.98)$ is -0.020203 accurate to six decimal places.)
(b) Let $f(x)=x^{5 / 2}, c=4, n=2$. Then

$$
f(x)=x^{5 / 2}, \quad f^{\prime}(x)=\frac{5}{2} x^{3 / 2}, \quad f^{\prime \prime}(x)=\frac{15}{4} x^{1 / 2}
$$

and evaluating at $x=c=4$, we get

$$
f(4)=4^{5 / 2}=(\sqrt{4})^{5}=32, \quad f^{\prime}(4)=\frac{5}{2} 4^{3 / 2}=\frac{5}{2}(\sqrt{4})^{3}=20, \quad f^{\prime \prime}(x)=\frac{15}{4} 4^{1 / 2}=\frac{15}{2}
$$

and the degree 2 Taylor polynomial of $f(x)=x^{5 / 2}$ about $x=4$ is

$$
T_{2}(x)=32+20(x-4)+\frac{15}{4}(x-4)^{2} .
$$

(c) Let $f(x)=\sqrt{x}, c=4, n=3$. Then

$$
f(x)=x^{1 / 2}, \quad f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}, \quad f^{\prime \prime}(x)=-\frac{1}{4} x^{-3 / 2}, \quad f^{(3)}(x)=\frac{3}{8} x^{-5 / 2}
$$

and evaluating at $x=c=4$, we get

$$
f(4)=2, \quad f^{\prime}(4)=\frac{1}{4}, \quad f^{\prime \prime}(4)=-\frac{1}{32}, \quad f^{(3)}(4)=\frac{3}{256},
$$

and the degree 3 Taylor polynomial of $f(x)=\sqrt{x}$ about $x=4$ is

$$
T_{3}(x)=2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}+\frac{1}{512}(x-4)^{3} .
$$

(d) Let $f(x)=\cos (x), c=\frac{\pi}{3}, n=5$. Then
$f(x)=\cos (x), f^{\prime}(x)=-\sin (x), f^{\prime \prime}(x)=-\cos (x), f^{(3)}(x)=\sin (x), f^{(4)}(x)=\cos (x), f^{(5)}(x)=-\sin (x)$,
and evaluating at $x=c=\frac{\pi}{3}$, we get

$$
f\left(\frac{\pi}{3}\right)=\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}, f^{\prime}\left(\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2}, f^{\prime \prime}\left(\frac{\pi}{3}\right)=-\frac{1}{2}, f^{(3)}\left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}, f^{(4)}\left(\frac{\pi}{3}\right)=\frac{1}{2}, f^{(5)}\left(\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2} .
$$

Then the degree 5 Taylor polynomial of $f(x)=\cos (x)$ about $x=\frac{\pi}{3}$ is

$$
T_{5}(x)=\frac{1}{2}-\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{3}\right)-\frac{1}{4}\left(x-\frac{\pi}{3}\right)^{2}+\frac{\sqrt{3}}{12}\left(x-\frac{\pi}{3}\right)^{3}+\frac{1}{48}\left(x-\frac{\pi}{3}\right)^{4}-\frac{\sqrt{3}}{240}\left(x-\frac{\pi}{3}\right)^{5} .
$$

(e) Let $f(x)=\cos (x), c=0, n=8$. Then
$f^{(0)}(x)=\cos (x), \quad f^{(1)}(x)=-\sin (x), \quad f^{(2)}(x)=-\cos (x), \quad f^{(3)}(x)=\sin (x), \quad f^{(4)}(x)=\cos (x), \quad$ etc.
(a pattern should be apparent), and evaluating at $x=c=0$, we get

$$
f^{(0)}(0)=1, \quad f^{(1)}(0)=0, \quad f^{(2)}(0)=-1, \quad f^{(3)}(0)=0, \quad f^{(4)}(0)=1, \quad \text { etc. }
$$

and the degree 8 Maclaurin polynomial of $f(x)=\cos (x)$ is

$$
T_{8}(x)=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\frac{1}{6!} x^{6}+\frac{1}{8!} x^{8}
$$

2. (a) Find an upper bound on the absolute value of the error made if linear approximation about $x=4$ is used to estimate $(3.9)^{5 / 2}$, and determine (without calculating the "exact" value numerically) whether this approximation is greater than, or less than, the exact value $(3.9)^{5 / 2}$.
(b) Find an upper bound on the absolute value of the error made if the degree 2 Taylor polynomial about $x=4$ is used to estimate $\sqrt{4.2}$, and determine (without calculating the "exact" value numerically) whether this approximation is greater than, or less than, the exact value $\sqrt{4.2}$.
(c) Determine what degree n of Taylor polynomial $T_{n}(x)$, of the function $f(x)=\cos (x)$, about $x=\frac{\pi}{3}$ is needed to guarantee that the Taylor polynomial approximation of $\cos \left(69^{\circ}\right)$ is accurate within 5×10^{-6} (i.e. the error is guaranteed to have an absolute value no larger than 5×10^{-6}).
(d) Determine what degree n of Maclaurin polynomial $T_{n}(x)$, of the function $f(x)=\log (1+x)$, is needed to guarantee that the Maclaurin polynomial approximation of $\log (1.4)$ is accurate within 10^{-3}.

Solution: For all parts, we use Taylor's Theorem (with Lagrange remainder), in particular the formula for the error,

$$
E_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(s)(x-c)^{n+1}
$$

where s is some number between c and x.
(a) Let $f(x)=x^{5 / 2}, c=4, n=1$. Taylor's Theorem says that

$$
(3.9)^{5 / 2}=f(3.9)=T_{1}(3.9)+E_{1}(3.9)
$$

where the error (or remainder) is (see the solution of $1(\mathrm{~b}), f^{\prime \prime}(x)=\frac{15}{4} x^{1 / 2}$)

$$
E_{1}(3.9)=\frac{1}{2!} f^{\prime \prime}(s)(3.9-4)^{2}=\frac{15}{8} \sqrt{s}(0.01)
$$

for some number s between 3.9 and 4. Taking absolute values, we get the same right hand side

$$
\left|E_{1}(3.9)\right|=\frac{15}{8} \sqrt{s}(0.01)
$$

Since \sqrt{s} is positive and increasing (one could assume this is "well known", or one could show that the derivative of \sqrt{s} with respect to s is positive for $3.9 \leq x \leq 4$), as s increases from 3.9 to 4 , the largest possible value of $\left|E_{1}(3.9)\right|$ would be at the right endpoint of the interval [3.9, 4] known to contain s, if $s=4$. Then we get an upper bound for the absolute value of the error

$$
\left|E_{1}(3.9)\right| \leq \frac{15}{8} \sqrt{4}(0.01)=\frac{15}{4}(0.01)=0.0375
$$

Because the error is $E_{1}(3.9)$ is positive, we have from Taylor's Theorem

$$
(3.9)^{5 / 2}=f(3.9)=T_{1}(3.9)+E_{1}(3.9)>T_{1}(3.9)
$$

so
the linear approximation is less than the exact value $(3.9)^{5 / 2}$.
(The answers can be checked with a calculator: the linear approximation is $T_{1}(3.9)=30$, the "exact" value is $(3.9)^{5 / 2}=30.03734327$, the approximation is indeed less than the exact value and the error is 0.03734327 , which is less than 0.0375 as predicted.)
(b) Let $f(x)=\sqrt{x}$. Taylor's Theorem says that

$$
\sqrt{4.2}=f(4.2)=T_{2}(4.2)+E_{2}(4.2)
$$

where the error is (see $\left.1(\mathrm{c}), f^{(3)}(x)=\frac{3}{8} x^{-5 / 2}\right)$

$$
E_{2}(4.2)=\frac{1}{3!} f^{(3)}(s)(4.2-4)^{3}=\frac{1}{16} s^{-5 / 2} 0.008
$$

for some number s between 4.2 and 4 . Since the expression is already positive, we get

$$
\left|E_{2}(4.2)\right|=\frac{1}{16} \frac{0.008}{(\sqrt{s})^{5}}
$$

Since $s^{5 / 2}=(\sqrt{s})^{5}$ is positive and increasing, as s increases from 4 to 4.2, its reciprocal $1 /(\sqrt{s})^{5}$ is positive and decreasing, as s increases from 4 to 4.2 (one could check that the derivative is negative on the interval), and the largest possible value for $\left|E_{2}(4.2)\right|$ would occur at the left endpoint of the interval known to contain s, if $s=4$, so we get an upper bound for the absolute value of the error

$$
\left|E_{2}(4.2)\right| \leq \frac{1}{16} \frac{0.008}{(\sqrt{4})^{5}}=\frac{1}{64000}=0.000015625
$$

The error is positive $\left(E_{2}(4.2)>0\right)$ and therefore

$$
T_{2}(4.2)<\sqrt{4.2}
$$

(Checking with a calculator we get $T_{2}(4.2)=2+\frac{1}{4}(4.2-4)-\frac{1}{64}(4.2-4)^{2}=2.049375, \quad f(4.2)=$ $\sqrt{4.2}=2.049390153$ accurate to 10 significant digits, therefore $E_{2}(4.2)=f(4.2)-T_{2}(4.2)=0.000015153$, which is positive, as predicted, and its absolute value is not larger than the upper bound 0.000015625 , as predicted).
(c) Note that 69° is $\frac{23 \pi}{60}$ radians. We are required to find a positive integer n such that the absolute value of the error satisfies

$$
\left|E_{n}\left(\frac{23 \pi}{60}\right)\right|<5 \times 10^{-6}
$$

Taylor's Theorem gives

$$
\left|E_{n}\left(\frac{23 \pi}{60}\right)\right|=\frac{1}{(n+1)!}\left|f^{(n+1)}(s)\right|\left|\frac{23 \pi}{60}-\frac{\pi}{3}\right|^{n+1}
$$

where s is some number between $\frac{23 \pi}{60}$ and $\frac{\pi}{3}$. The derivatives of $f(x)=\cos (x)$ are $f^{\prime}(x)=-\sin (x)$, $f^{\prime \prime}(x)=-\cos (x), f^{(3)}(x)=\sin (x), f^{(4)}(x)=\cos (x)$, etc., so the absolute value $\left|f^{(n+1)}(s)\right|$ is either
$|\sin (s)|$ or $|\cos (s)|$. Both of these are always less than or equal to 1 in absolute value, so it is always true that

$$
\left|f^{(n+1)}(s)\right| \leq 1
$$

for all n, without using any specific information about s. Using this, we get an upper bound for the absolute value of the error for the Taylor polynomial $T_{n}(x)$:

$$
\left|E_{n}\left(\frac{23 \pi}{60}\right)\right| \leq \frac{1}{(n+1)!}\left|\frac{\pi}{20}\right|^{n+1}
$$

Trying different values of n, we get

$$
\begin{gathered}
\left.\left|E_{1}\left(\frac{23 \pi}{60}\right)\right| \leq \frac{1}{2!} \frac{\pi^{2}}{20^{2}} \leq 0.013, \quad \left\lvert\, E_{2}\left(\frac{23 \pi}{60}\right)\right.\right) \left\lvert\, \leq \frac{1}{3!} \frac{\pi^{3}}{20^{3}} \leq 0.00065\right. \\
\left|E_{3}\left(\frac{23 \pi}{60}\right)\right| \leq \frac{1}{4!} \frac{\pi^{4}}{20^{4}} \leq 0.000026, \quad\left|E_{4}\left(\frac{23 \pi}{60}\right)\right| \leq \frac{1}{5!} \frac{\pi^{5}}{20^{5}} \leq 0.0000008=8 \times 10^{-7},
\end{gathered}
$$

and we can stop at

$$
n=4
$$

since $8 \times 10^{-7}<5 \times 10^{-6}$. Therefore the 4th-degree Taylor polynomial $T_{4}(x)$, of $\cos (x)$ centred at $x=\frac{\pi}{3}$, is guaranteed to be within 5×10^{-6} of the exact value of $\cos \left(69^{\circ}\right)$.
(You were not required to calculate $T_{4}\left(\frac{23 \pi}{60}\right)$, but it is approximately 0.3583686496 , while $\cos \left(\frac{23 \pi}{60}\right)=$ 0.3583679494 , so the error is approximately -7×10^{-7}, the absolute value is indeed not larger than 5×10^{-6}. It might be true that a lower value of n would be accurate enough, but we can't guarantee it unless we do more work, by finding more accurate upper bounds for $\left|f^{(n+1)}(s)\right|$.)
(d) "Maclaurin" means "Taylor centred at $c=0$ ". Here we use

$$
x=0.4
$$

since we want $\log (1+x)=\log (1.4)$. We need to find a positive integer n such that the absolute value of the error satisfies

$$
\left|E_{n}(0.4)\right|<0.001
$$

Taylor's Theorem gives

$$
E_{n}(0.4)=\frac{1}{(n+1)!} f^{(n+1)}(s)(0.4)^{n+1}
$$

where s is some number between 0 and 0.4 . The derivatives of $f(x)=\log (1+x)$ are

$$
\begin{gathered}
f^{\prime}(x)=(1+x)^{-1}, f^{\prime \prime}(x)=(-1)(1+x)^{-2}, f^{(3)}(x)=(-1)(-2)(1+x)^{-3} \\
f^{(4)}(x)=(-1)(-2)(-3)(1+x)^{-4}
\end{gathered}
$$

etc., so

$$
\left|f^{(n+1)}(s)\right|=(1)(2)(3) \cdots(n)(1+s)^{-n-1}=\frac{n!}{(1+s)^{n+1}}
$$

and

$$
\left|E_{n}(0.4)\right|=\frac{1}{(n+1)!}\left|f^{(n+1)}(s)\right|\left|(0.4)^{n+1}\right|=\frac{(0.4)^{n+1}}{(n+1)(1+s)^{n+1}}
$$

For any positive integer n the expression $(1+s)^{n+1}$ is positive and increasing as s increases from 0 to 0.4 , its reciprocal $1 /(1+s)^{n+1}$ is positive and decreasing as s increases from 0 to 0.4 (you could show that the derivative is negative for $n \geq 1$ and any s in the interval), so the maximum possible value of $\left|E_{n}(0.4)\right|$ would occur at the left endpoint of the interval, if $s=0$. We get the upper bound

$$
\left|E_{n}(0.4)\right| \leq \frac{(0.4)^{n+1}}{(n+1)(1+0)^{n+1}}=\frac{(0.4)^{n+1}}{n+1}
$$

Trying different values of n, we get

$$
\begin{gathered}
\left|E_{1}(0.4)\right| \leq \frac{(0.4)^{2}}{2}=0.08,\left|E_{2}(0.4)\right| \leq \frac{(0.4)^{3}}{3}=0.0213333,\left|E_{3}(0.4)\right| \leq \frac{(0.4)^{4}}{4}=0.0064 \\
\left|E_{4}(0.4)\right| \leq \frac{(0.4)^{5}}{5}=0.002048, \quad\left|E_{5}(0.4)\right| \leq \frac{(0.4)^{6}}{6}=0.000682667
\end{gathered}
$$

and we can stop at

$$
n=5
$$

since the upper bound for $\left|E_{5}(0.4)\right|$ is less than $10^{-3}=0.001$. Therefore the degree 5 Maclaurin polynomial $T_{5}(x)$, of $f(x)=\log (1+x)$, is guaranteed to be within 10^{-3} of $\log (1+0.4)$.
(In fact, checking with a calculator we get $T_{5}(0.4)=0.3369813333$ and $\log (1.4)=0.3364722366$, so the actual error is $\log (1.4)-T_{5}(0.4)=-0.0005090967$, whose absolute value is indeed no greater than 0.001 , as guaranteed.)
3. Let R be the region between the y-axis and the curve $x=(16+y)^{1 / 4}$, with $-16 \leq y \leq 0$, and both x and y measured in metres. The region R is rotated around the y-axis, creating a volume. This volume is filled with a fluid that has volume density $888 \mathrm{~kg} / \mathrm{m}^{3}$. Determine the work done (in joules) pumping all the fluid up to $y=0$. Use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ for the acceleration due to gravity. (You must evaluate the integral and a calculator-ready answer is sufficient.)

Solution:

An infinitesimally thin slice of the fluid at level y is circular with radius $x=(16+y)^{1 / 4}$ and thickness $d y$. It has infinitesimal volume $\pi x^{2} d y=\pi \sqrt{16+y} d y$, infinitesimal mass $\rho \pi \sqrt{16+y} d y$, where $\rho=888$ $\mathrm{kg} / \mathrm{m}^{3}$. The infinitesimal amount of work done in lifting this slice from level y up to 0 , against gravity, is

$$
d W=\rho \pi \sqrt{16+y} d y \cdot g \cdot(0-y), \quad-16 \leq y \leq 0
$$

where $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. Notice that $d W \geq 0$. Then the total amount of work lifting all the slices up to $y=0$, with the fluid occupying slices at levels from $y=-16$ to $y=0$, is

$$
W=\int_{y=-16}^{y=0} d W=\pi \rho g \int_{-16}^{0}(-y) \sqrt{16+y} d y
$$

This integral can be evaluated by making a substitution

$$
u=16+y, \quad d u=d y
$$

then

$$
\begin{aligned}
W & =\pi \rho g \int_{-16}^{0}(-y) \sqrt{16+y} d y \\
& =\pi \rho g \int_{0}^{16}(16-u) \sqrt{u} d u \\
& =\pi \rho g \int_{0}^{16}\left(16 u^{1 / 2}-u^{3 / 2}\right) d u \\
& =\left.\pi \rho g\left(\frac{32}{3} u^{3 / 2}-\frac{2}{5} u^{5 / 2}\right)\right|_{0} ^{16}
\end{aligned}
$$

and for a calculator-ready answer (i.e. a fully numerical expression that could be evaluated with a calculator) we must substitute in the numerical values for ρ and g. The work done is

$$
W=\pi(888)(9.8)\left(\frac{32}{3} 16^{3 / 2}-\frac{2}{5} 16^{5 / 2}\right)
$$

J.

On a test or exam, this need not be simplified any further, but if you have the time (like when doing homework) you can use $16^{1 / 2}=4$ and simplify to

$$
W=\pi(888)(9.8) \frac{4^{6}}{15}=\pi(888)(9.8) \frac{4096}{15} \approx 7465477.71 \quad \mathrm{~J}
$$

