MATH 101 V01 - ASSIGNMENT 6

Solutions

1. Use the Integral Test to determine if the series is convergent or divergent.
(a) $1+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{7}}+\ldots$
(b) $\sum_{n=2}^{\infty} \frac{1}{n(\log (n))^{3}}$
(c) $\sum_{n=2}^{\infty} \frac{\log \left(n^{2}\right)}{n}$

Solution:
(a)

$$
1+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{7}}+\cdots=\sum_{n=1}^{\infty} \frac{1}{\sqrt{2 n-1}}
$$

The function $f(x)=\frac{1}{\sqrt{2 x-1}}=(2 x-1)^{-1 / 2}$ is continuous for $x>\frac{1}{2}$, positive for $x>\frac{1}{2}$, and

$$
f^{\prime}(x)=-\frac{1}{(2 x-1)^{3 / 2}}<0
$$

so $f(x)$ is decreasing for $x>\frac{1}{2}$. Therefore f is continuous, positive and decreasing on $[1, \infty)$.
The improper integral

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{\sqrt{2 x-1}} d x & \left.=\lim _{t \rightarrow \infty} \int_{1}^{t}(2 x-1)^{-1 / 2} d x \quad \text { (substitution: } u=2 x-1, d u=2 d x\right) \\
& =\lim _{t \rightarrow \infty} \frac{1}{2} \int_{1}^{2 t-1} u^{-1 / 2} d u \\
& =\left.\lim _{t \rightarrow \infty} u^{1 / 2}\right|_{1} ^{2 t-1} \\
& =\lim _{t \rightarrow \infty}(\sqrt{2 t-1}-1)=\infty
\end{aligned}
$$

is divergent. By the Integral Test, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{2 n-1}}$ also is divergent.
(b) The function $f(x)=\frac{1}{x(\log (x))^{3}}$ is continuous for $x>0$, positive for $x>1$, and

$$
f^{\prime}(x)=-\frac{3+\ln x}{x^{2}(\log (x))^{4}}<0 \text { for } x>e^{-3}
$$

so $f(x)$ is decreasing for $x>e^{-3} \approx 0.05$. Therefore f is continuous, positive and decreasing on $[2, \infty)$. The improper integral

$$
\begin{aligned}
\int_{2}^{\infty} \frac{1}{x(\log (x))^{3}} d x & \left.=\lim _{t \rightarrow \infty} \int_{2}^{t}(\log (x))^{-3} \frac{1}{x} d x \quad \text { (substitution: } u=\log (x), d u=\frac{1}{x} d x\right) \\
& =\lim _{t \rightarrow \infty} \int_{\log (2)}^{\log (t)} u^{-3} d u \\
& =\left.\lim _{t \rightarrow \infty}\left(-\frac{1}{2} u^{-2}\right)\right|_{\log (2)} ^{\log (t)} \\
& =\lim _{t \rightarrow \infty}\left(-\frac{1}{2(\log (t))^{2}}+\frac{1}{2(\log (2))^{2}}\right)=\frac{1}{2(\log (2))^{2}}
\end{aligned}
$$

is convergent. By the Integral Test, $\sum_{n=2}^{\infty} \frac{1}{n(\log (n))^{3}}$ also is convergent.
(c) The function $f(x)=\frac{\log \left(x^{2}\right)}{x}=\frac{2 \log (x)}{x}$ is continuous for $x>0$, positive for $x>1$, and

$$
f^{\prime}(x)=\frac{2(1-\log (x))}{x^{2}}<0 \text { for } x>e
$$

so $f(x)$ is decreasing for $x \geq e \approx 2.7$. Therefore f is continuous, positive and decreasing on $[3, \infty)$ (it is decreasing on $[e, \infty)$).
The improper integral

$$
\begin{aligned}
\int_{3}^{\infty} \frac{\log \left(x^{2}\right)}{x} d x & \left.=\lim _{t \rightarrow \infty} \int_{3}^{t} 2(\log (x)) \frac{1}{x} d x \quad \text { (substitution: } u=\log (x), d u=\frac{1}{x} d x\right) \\
& =\lim _{t \rightarrow \infty} \int_{\log (3)}^{\log (t)} 2 u d u \\
& \left.=\lim _{t \rightarrow \infty} u^{2}\right]_{\log (t)}^{\log (3)} \\
& =\lim _{t \rightarrow \infty}(\log (t))^{2}-(\log (3))^{2}=\infty
\end{aligned}
$$

is divergent. By the Integral Test, $\sum_{n=3}^{\infty} \frac{\log \left(n^{2}\right)}{n}$ also is divergent, and so is

$$
\sum_{n=2}^{\infty} \frac{\log \left(n^{2}\right)}{n}=\frac{\log \left(2^{2}\right)}{2}+\sum_{n=3}^{\infty} \frac{\log \left(n^{2}\right)}{n}
$$

2. Find a power series representation for the function and determine the interval of convergence.
(a) $f(x)=\frac{x^{3}}{4 x^{2}+3}$
(b) $f(x)=\frac{x+2}{2 x^{2}-x-1}$
(c) $f(x)=\ln (3+x)$
(d) $f(x)=\arctan (3 x)$
(e) $f(x)=\frac{2 x}{\left(1+x^{2}\right)^{2}}$

Solution:

(a) Use some algebra to express the given function in terms of a geometric series:

$$
\begin{aligned}
\frac{x^{3}}{4 x^{2}+3} & =\frac{x^{3}}{3} \frac{1}{1-\left(-\frac{4 x^{2}}{3}\right)} \\
& =\frac{x^{3}}{3}\left[1+\left(-\frac{4 x^{2}}{3}\right)+\left(-\frac{4 x^{2}}{3}\right)^{2}+\left(-\frac{4 x^{2}}{3}\right)^{3}+\ldots\right] \quad \text { if }\left|-\frac{4 x^{2}}{3}\right|<1 \text { i.e. if }|x|<\frac{\sqrt{3}}{2} \\
& =\frac{1}{3} x^{3}-\frac{4}{3^{2}} x^{5}+\frac{4^{2}}{3^{3}} x^{7}-\frac{4^{3}}{3^{4}} x^{9}+\ldots \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{4^{n}}{3^{n+1}} x^{2 n+3} \quad \text { if }|x|<\frac{\sqrt{3}}{2}
\end{aligned}
$$

The interval of convergence is $\left(-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right)$ (geometric series are always divergent at the endpoints of their interval of convergence), or

$$
-\frac{\sqrt{3}}{2}<x<\frac{\sqrt{3}}{2}
$$

(b) First we use a partial fraction decomposition. Factor the denominator as $2 x^{2}-x-1=(2 x+1)(x-1)$

$$
\frac{x+2}{(2 x+1)(x-1)}=\frac{A}{2 x+1}+\frac{B}{x-1}
$$

gives $x+2=A(x-1)+B(2 x+1)$, then $A=-1, B=1$.

$$
\begin{aligned}
\frac{x+2}{2 x^{2}-x-1} & =\frac{-1}{2 x+1}+\frac{1}{x-1} \\
& =-\frac{1}{1-(-2 x)}-\frac{1}{1-x} \\
& =-\left[1+(-2 x)+(-2 x)^{2}+(-2 x)^{3}+\ldots\right]-\left[1+x+x^{2}+x^{3}+\ldots\right] \\
& \quad \text { if }|-2 x|<1 \text { and }|x|<1, \text { i.e. if }|x|<\frac{1}{2} \\
& =-1+2 x-2^{2} x^{2}+2^{3} x^{3}-\cdots-1-x-x^{2}-x^{3}-\ldots \\
& =-2+(2-1) x+\left(-2^{2}-1\right) x^{2}+\left(2^{3}-1\right) x^{3}+\ldots \\
& =\sum_{n=0}^{\infty}\left[(-1)^{n+1} 2^{n}-1\right] x^{n} \quad \text { if }|x|<\frac{1}{2}
\end{aligned}
$$

The interval of convergence is $\left(-\frac{1}{2}, \frac{1}{2}\right)$ (geometric series are always divergent at the endpoints of their interval of convergence), or

$$
-\frac{1}{2}<x<\frac{1}{2}
$$

(Alternatively, since the centre of the series was not specified, one could complete the square

$$
2 x^{2}-x-1=2\left(x^{2}-\frac{1}{2} x-\frac{1}{2}\right)=2\left[\left(x-\frac{1}{4}\right)^{2}-\frac{9}{16}\right]=-\frac{9}{8}\left[1-\left(\frac{4 x-1}{3}\right)^{2}\right]
$$

write

$$
\frac{x+2}{2 x^{2}-x-1}=\frac{x-\frac{1}{4}+\frac{9}{4}}{2 x^{2}-x-1}=-\frac{8}{9}\left[\frac{9}{4}+\frac{3}{4}\left(\frac{4 x-1}{3}\right)\right] \frac{1}{1-\left(\frac{4 x-1}{3}\right)^{2}}
$$

and expand the term on the right in a geometric series that converges for $\left|\left(\frac{4 x-1}{3}\right)^{2}\right|<1$ or

$$
-\frac{1}{2}<x<1
$$

with centre $\frac{1}{4}$, radius of convergence $\frac{3}{4}$).
(c) Note that $f^{\prime}(x)=\frac{1}{3+x}$, so we have

$$
\begin{aligned}
\log (3+x) & =\int \frac{1}{3+x} d x \\
& =\int \frac{1}{3} \frac{1}{1-\left(-\frac{x}{3}\right)} d x \\
& =\frac{1}{3} \int\left[1+\left(-\frac{x}{3}\right)+\left(-\frac{x}{3}\right)^{2}+\left(-\frac{x}{3}\right)^{3}+\ldots\right] d x \quad \text { if }\left|-\frac{x}{3}\right|<1 \text { i.e. if }|x|<3 \\
& =\frac{1}{3} \int\left[1-\frac{1}{3} x+\frac{1}{3^{2}} x^{2}-\frac{1}{3^{3}} x^{3}+\ldots\right] d x \\
& =\frac{1}{3}\left[x-\frac{1}{2 \cdot 3} x^{2}+\frac{1}{3 \cdot 3^{2}} x^{3}-\frac{1}{4 \cdot 3^{3}} x^{4}+\cdots+c\right] \quad \text { substitute } x=0 \text { to get } c=3 \log (3), \text { or } \frac{1}{3} c=\log (3) \\
& =\log (3)+\frac{1}{3} x-\frac{1}{2 \cdot 3^{2}} x^{2}+\frac{1}{3 \cdot 3^{3}} x^{3}-\frac{1}{4 \cdot 3^{4}} x^{4}+\ldots \\
& =\log (3)+\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \cdot 3^{n}} x^{n} \quad \text { if }|x|<3
\end{aligned}
$$

The radius of convergence is $R=3$, the same as for $1 /(1-(-x / 3))$, but since we have integrated or differentiated, convergence at the endpoints of the interval of convergence must be investigated separately. $x=3$ gives $\log (3)+1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4} \ldots$ which is convergent (alternating series test).
$x=-3$ gives $\log (3)-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4} \ldots$ which is divergent (harmonic series).
The interval of convergence is $(-3,3]$, or

$$
-3<x \leq 3
$$

(d) From the February 26 lecture we have

$$
\arctan (x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots
$$

with radius of convergence 1 , and interval of convergence

$$
-1 \leq x \leq 1
$$

Now replace x with $3 x$:

$$
\begin{aligned}
\tan ^{-1}(3 x) & =3 x-\frac{(3 x)^{3}}{3}+\frac{(3 x)^{5}}{5}-\frac{(3 x)^{7}}{7}+\ldots \\
& =3 x-\frac{3^{3}}{3} x^{3}+\frac{3^{5}}{5} x^{5}-\frac{3^{7}}{7} x^{7}+\ldots \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{3^{2 n+1}}{2 n+1} x^{2 n+1}
\end{aligned}
$$

which is convergent for $-1 \leq 3 x \leq 1$, i.e. in the interval of convergence $\left[-\frac{1}{3}, \frac{1}{3}\right]$, or

$$
-\frac{1}{3} \leq x \leq \frac{1}{3}
$$

(e) We observe that the given function is the derivative of a function that can be expressed in terms of the geometric series:

$$
\begin{aligned}
\frac{2 x}{\left(1+x^{2}\right)^{2}} & =-\frac{d}{d x}\left[\frac{1}{1+x^{2}}\right] \\
& =-\frac{d}{d x}\left[\frac{1}{1-\left(-x^{2}\right)}\right] \\
& =-\frac{d}{d x}\left[1+\left(-x^{2}\right)+\left(-x^{2}\right)^{2}+\left(-x^{2}\right)^{3}+\ldots\right] \quad \text { if }\left|-x^{2}\right|<1, \text { i.e. if }|x|<1 \\
& =-\frac{d}{d x}\left[1-x^{2}+x^{4}-x^{6}+\ldots\right] \\
& =-\left[-2 x+4 x^{3}-6 x^{5}+\ldots\right] \\
& =2 x-4 x^{3}+6 x^{5}-\ldots \\
& =\sum_{n=1}^{\infty}(-1)^{n-1} 2 n x^{2 n-1}
\end{aligned}
$$

The radius of convergence is $R=1$, the same as for $1 /\left(1+x^{2}\right)$, but since we have integrated or differentiated, convergence at the endpoints of the interval of convergence must be investigated separately.
$x=1$ gives $2-4+6-\ldots$ which is a divergent alternating series (Divergence Test).
$x=-1$ gives $-2+4-6+\ldots$ which which is also a divergent alternating series (Divergence Test). The interval of convergence is $(-1,1)$, or

$$
-1<x<1
$$

3. Let D_{1} be the closed disk (circle together with its interior region) of radius R centred at the origin and let D_{2} be the closed disk of radius R centred at the point $(0, \sqrt{3} R)$. Determine the area of the region of the intersection (or overlap) of D_{1} and D_{2} (the shaded region in the figure below).

Solution:
The closed disk D_{1} is $x^{2}+y^{2} \leq R^{2}$, its boundary is the circle $x^{2}+y^{2}=R^{2}$, and the top half of this circle is

$$
y=\sqrt{R^{2}-x^{2}} \quad(-R \leq x \leq R) .
$$

The closed disk D_{2} is $x^{2}+(y-\sqrt{3} R)^{2} \leq R^{2}$, its boundary is the circle $x^{2}+(y-\sqrt{3} R)^{2}=R^{2}$, and the bottom half of this circle is

$$
y=\sqrt{3} R-\sqrt{R^{2}-x^{2}} \quad(-R \leq x \leq R) .
$$

We find the intersections of the two curves by solving

$$
\begin{aligned}
\sqrt{R^{2}-x^{2}} & =\sqrt{3} R-\sqrt{R^{2}-x^{2}} \\
2 \sqrt{R^{2}-x^{2}} & =\sqrt{3} R \\
4\left(R^{2}-x^{2}\right) & =3 R^{2} \\
R^{2} & =4 x^{2}
\end{aligned}
$$

so the intersection points are at

$$
x=-\frac{R}{2}, \quad \frac{R}{2},
$$

and the area of the region of the intersection of D_{1} and D_{2} is (noting that the integrand is an even function of x)

$$
\begin{aligned}
\int_{-R / 2}^{R / 2}\left[\sqrt{R^{2}-x^{2}}-\left(\sqrt{3} R-\sqrt{R^{2}-x^{2}}\right)\right] d x & =2 \int_{0}^{R / 2}\left[\sqrt{R^{2}-x^{2}}-\left(\sqrt{3} R-\sqrt{R^{2}-x^{2}}\right)\right] d x \\
& =4 \int_{0}^{R / 2} \sqrt{R^{2}-x^{2}} d x-2 \sqrt{3} R \int_{0}^{R / 2} d x \\
& =4 \int_{0}^{R / 2} \sqrt{R^{2}-x^{2}} d x-\sqrt{3} R^{2} .
\end{aligned}
$$

In the last integral make a trigonometric substitution

$$
x=R \sin (\theta), \quad d x=R \cos (\theta) d \theta, \quad \sqrt{R^{2}-x^{2}}=R \cos (\theta),
$$

to get

$$
\begin{aligned}
\int_{0}^{R / 2} \sqrt{R^{2}-x^{2}} d x & =\int_{0}^{\pi / 6} R \cos (\theta)(R \cos (\theta) d \theta) \\
& =R^{2} \int_{0}^{\pi / 6} \cos ^{2}(\theta) d \theta \\
& =R^{2} \int_{0}^{\pi / 6} \frac{1}{2}[1+\cos (2 \theta)] d \theta \\
& =\left.R^{2} \frac{1}{2}\left[\theta+\frac{1}{2} \sin (2 \theta)\right]\right|_{0} ^{\pi / 6} \\
& =R^{2} \frac{1}{2}\left[\frac{\pi}{6}+\frac{1}{2} \sin \left(\frac{\pi}{3}\right)\right] \\
& =R^{2} \frac{1}{2}\left(\frac{\pi}{6}+\frac{\sqrt{3}}{4}\right)
\end{aligned}
$$

and therefore the area is

$$
\begin{aligned}
4 \int_{0}^{R / 2} \sqrt{R^{2}-x^{2}} d x-\sqrt{3} R^{2} & =R^{2}\left(\frac{\pi}{3}+\frac{\sqrt{3}}{2}\right)-\sqrt{3} R^{2} \\
& =\left(\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right) R^{2}
\end{aligned}
$$

(which is positive).

