MATH 101 V01 - ASSIGNMENT 5

Solutions

1. (a) Determine all values of the real number p such that the following integral converges:

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x
$$

If the integral converges, find its value.
(b) Determine all values of the real number q such that the following integral converges:

$$
\int_{0}^{1} \frac{1}{x^{q}} d x
$$

If the integral converges, find its value.

Solution:

(a) Here p is a constant. Because the formula for the antiderivative is different, depending on whether $p \neq 1$ or $p=1$, we consider the two cases separately.
First, suppose $p \neq 1$ (so either $p<1$ or $p>1$). Then

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x^{p}} d x & =\lim _{r \rightarrow \infty} \int_{1}^{r} \frac{1}{x^{p}} d x \\
& =\lim _{r \rightarrow \infty} \int_{1}^{r} x^{-p} d x \\
& =\left.\lim _{r \rightarrow \infty} \frac{x^{-p+1}}{-p+1}\right|_{1} ^{r} \\
& =\lim _{r \rightarrow \infty} \frac{1}{1-p}\left[r^{1-p}-1\right] \quad(p \neq 1)
\end{aligned}
$$

Now if $p<1$, then $1-p>0$ (i.e. $1-p$ is a positive power) so that the limit

$$
\lim _{r \rightarrow \infty} r^{1-p}=\infty \quad(p<1)
$$

diverges and the improper integral diverges.
On the other hand if $p>1$, then $p-1$ is a positive power, $\lim _{r \rightarrow \infty} r^{p-1}=\infty$, and

$$
\lim _{r \rightarrow \infty} r^{1-p}=\lim _{r \rightarrow \infty} \frac{1}{r^{p-1}}=0 \quad(p>1)
$$

so this limit converges and the imporoper integral converges, to

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x=\lim _{r \rightarrow \infty} \frac{1}{1-p}\left[\frac{1}{r^{p-1}}-1\right]=\frac{1}{1-p}[0-1]=\frac{1}{p-1} \quad(p>1)
$$

Next, we consider the remaining case $p=1$.

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x} d x & =\lim _{r \rightarrow \infty} \int_{1}^{r} \frac{1}{x} d x \\
& =\left.\lim _{r \rightarrow \infty} \log (|x|)\right|_{1} ^{r} \\
& =\lim _{r \rightarrow \infty}[\log (r)-\log (1)]=\lim _{r \rightarrow \infty} \log (r) \quad(p=1)
\end{aligned}
$$

But $\lim _{r \rightarrow \infty} \log (r)$ diverges (to infinity), so the improper integral diverges.
Summarizing, all values of the real number p such that the integral converges are those for which $p>1$, and in this case the value of the integral is

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x=\frac{1}{p-1} \quad(p>1)
$$

For $p \leq 1$ the integral diverges.
(b) Again, q is a constant, and we consider separately the cases $q \neq 1$ and $q=1$.

First, suppose $q \neq 1$ (so either $q<1$ or $q>1$). There is a possible discontinuity (depending on the value of q; if $q \leq 0$ there is no discontinuity) at the left endpoint $x=0$, so we compute

$$
\begin{aligned}
\int_{0}^{1} \frac{1}{x^{q}} d x & =\lim _{\ell \rightarrow 0+} \int_{\ell}^{1} \frac{1}{x^{q}} d x \\
& =\lim _{\ell \rightarrow 0+} \int_{\ell}^{1} x^{-q} d x \\
& =\left.\lim _{\ell \rightarrow 0+} \frac{x^{-q+1}}{-q+1}\right|_{\ell} ^{1} \\
& =\lim _{\ell \rightarrow 0+} \frac{1}{1-q}\left[1-\ell^{1-q}\right] \quad(q \neq 1)
\end{aligned}
$$

Now if $q>1$ then $1-q$ is a negative power and the limit

$$
\lim _{\ell \rightarrow 0+} \ell^{1-q}=\lim _{\ell \rightarrow 0+} \frac{1}{\ell^{q-1}}=\infty \quad(q>1)
$$

diverges and the improper integral diverges.
On the other hand if $q<1$ then $1-q$ is a positive power and the limit

$$
\lim _{\ell \rightarrow 0+} \ell^{1-q}=0 \quad(q<1)
$$

converges, and the improper integral converges

$$
\int_{0}^{1} \frac{1}{x^{q}} d x=\lim _{\ell \rightarrow 0+} \frac{1}{1-q}\left[1-\ell^{1-q}\right]=\frac{1}{1-q} \quad(q<1)
$$

Now the remaining case is $q=1$.

$$
\begin{aligned}
\int_{0}^{1} \frac{1}{x} d x & =\lim _{\ell \rightarrow 0+} \int_{\ell}^{1} \frac{1}{x} d x \\
& =\left.\lim _{\ell \rightarrow 0+} \log (|x|)\right|_{\ell} ^{1} \\
& =\lim _{\ell \rightarrow 0+}[\log (1)-\log (\ell)]=-\lim _{\ell \rightarrow 0+} \log (\ell) \quad(q=1)
\end{aligned}
$$

But $\lim _{\ell \rightarrow 0+} \log (\ell)$ diverges (to negative infinity), so the improper integral diverges.
In summary, all values of the real number q such that the integral converges are those for which $q<1$, and in this case the value of the integral is

$$
\int_{0}^{1} \frac{1}{x^{q}} d x=\frac{1}{1-q} \quad(q<1)
$$

For $q \geq 1$ the integral diverges.
2. Let R be the bounded region between the two curves $y=\sqrt[4]{x}$ and $y=x$. Find the volume of the solid that is generated by rotating the region R about the vertical line $x=1$:
(a) Using slices.
(b) Using cylindrical shells.

Solution:
First we note that $\sqrt[4]{x}$ is only defined for $x \geq 0$. Then we find the intersection(s) of the two curves $y=\sqrt[4]{x}$ and $y=x$, by setting

$$
\sqrt[4]{x}=x \quad(x \geq 0)
$$

which is equivalent to

$$
\begin{aligned}
\sqrt[4]{x}-x=0 & (x \geq 0) \\
\sqrt[4]{x}\left[1-(\sqrt[4]{x})^{3}\right]=0 & (x \geq 0)
\end{aligned}
$$

therefore

$$
\sqrt[4]{x}=0 \quad \text { or } \quad(\sqrt[4]{x})^{3}=1 \quad(x \geq 0)
$$

The only solution of the first equation is $x=0$, and the only solution of the second equation is $x=1$, so we have found all the intersections of the two curves, at $(x, y)=(0,0)$ and at $(x, y)=(1,1)$. Furthermore, for $x \geq 1$ the region between the two curves is unbounded, and the bounded region is

$$
R=\{(x, y): \quad x \leq y \leq \sqrt[4]{x}, \quad 0 \leq x \leq 1\}
$$

(a) Using slices, perpendicular to the axis of rotation, the slices are horizontal with infinitesimal thickness $d y$, so the integrand and limits of integration should be expressed in terms of y, and the two curves are expressed as $x=y$ and $x=y^{4}$. The slices are washers, with outer (large) radius $1-y^{4}$ (the positive distance between the x-value on the farther curve at height y, to the x-value 1 of the axis of rotation) and and inner (small) radius $1-y$ (the positive distance between the nearer curve at height y, to the vertical axis of rotation). The volume is

$$
\begin{aligned}
V & =\int_{y=0}^{y=1}\left[\pi\left(1-y^{4}\right)^{2}-\pi(1-y)^{2}\right] d y \\
& =\pi \int_{0}^{1}\left[\left(1-2 y^{4}+y^{8}\right)-\left(1-2 y+y^{2}\right)\right] d y \\
& =\pi \int_{0}^{1}\left[2 y-y^{2}-2 y^{4}+y^{8}\right] d y \\
& =\left.\pi\left(y^{2}-\frac{1}{3} y^{3}-\frac{2}{5} y^{5}+\frac{1}{9} y^{9}\right)\right|_{0} ^{1} \\
& =\pi\left(1-\frac{1}{3}-\frac{2}{5}+\frac{1}{9}\right)=\frac{17}{45} \pi
\end{aligned}
$$

(b) Using cylindrical shells, parallel to the axis of rotation, the cylindrical shells are vertical with infinitesimal thickness $d x$, so the integrand and limits of integration should be expressed in terms of x. The radius of each cylindrical shell is $1-x$ (the positive distance from typical position x to the axis of rotation $x=1$) and the height of each cylindrical shell is the positive distance between the y-values of the two curves at position x, which is $\sqrt[4]{x}-x$. The volume is

$$
\begin{aligned}
V & =\int_{x=0}^{x=1} 2 \pi(1-x)(\sqrt[4]{x}-x) d x \\
& =2 \pi \int_{0}^{1}\left(x^{1 / 4}-x^{5 / 4}-x+x^{2}\right) d x \\
& =\left.2 \pi\left(\frac{4}{5} x^{5 / 4}-\frac{4}{9} x^{9 / 4}-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}\right)\right|_{0} ^{1} \\
& =2 \pi\left(\frac{4}{5}-\frac{4}{9}-\frac{1}{2}+\frac{1}{3}\right)=\frac{17}{45} \pi
\end{aligned}
$$

(Of course, the answers to parts (a) and (b) should agree.)

