MATH 101 V01 - ASSIGNMENT 1

Solutions

1. Consider $\int_{0}^{2}(1-2 t) d t$.
(a) Calculate the Riemann sum for this integral using left endpoints and 4 subintervals.
(b) Calculate the Riemann sum for this integral using right endpoints and 4 subintervals.
(c) Explain why, if any function f is continuous on $[l, r]$, then $\int_{l}^{r} f(t) d t$ may be calculated by the definition of the integral as the limit of Riemann sums using any choice of sample points t_{i}^{*} in each subinterval $\left[t_{i-1}, t_{i}\right]$ of the partition.
(d) Find the value of the integral, using the definition of the integral as the limit of Riemann sums using right endpoints $t_{i}^{*}=t_{i}$ in every subinterval.
(e) Interpret your result for part (d) in terms of the areas between the curve and the horizontal axis, between $t=0$ and $t=2$.

Solution:

The function is $f(t)=1-2 t, t \in[0,2]$, the interval width is $\Delta t=(r-l) / n=\frac{2}{n}$, the partition points are $t_{i}=l+i \Delta t=\frac{2 i}{n}, i=0,1, \ldots, n$.
(a) With $n=4, \Delta t=\frac{1}{2}$ and the partition points are $t_{0}=0, t_{1}=\frac{1}{2}, t_{2}=1, t_{3}=\frac{3}{2}, t_{4}=2$. The left endpoint of each subinterval $\left[t_{i-1}, t_{i}\right]$ is $t_{i}^{*}=t_{i-1}$. The Riemann sum is

$$
\begin{aligned}
\sum_{i=1}^{n} f\left(t_{i}^{*}\right) \Delta t & =\sum_{i=1}^{4} f\left(t_{i-1}\right) \frac{1}{2} \\
& =f(0) \frac{1}{2}+f(1 / 2) \frac{1}{2}+f(1) \frac{1}{2}+f(3 / 2) \frac{1}{2} \\
& =(1) \frac{1}{2}+(0) \frac{1}{2}+(-1) \frac{1}{2}+(-2) \frac{1}{2} \\
& =-1
\end{aligned}
$$

(b) The right endpoint of each subinterval $\left[t_{i-1}, t_{i}\right]$ is $t_{i}^{*}=t_{i}$. The Riemann sum is

$$
\begin{aligned}
\sum_{i=1}^{n} f\left(t_{i}^{*}\right) \Delta t & =\sum_{i=1}^{4} f\left(t_{i}\right) \frac{1}{2} \\
& =f(1 / 2) \frac{1}{2}+f(1) \frac{1}{2}+f(3 / 2) \frac{1}{2}+f(2) \frac{1}{2} \\
& =(0) \frac{1}{2}+(-1) \frac{1}{2}+(-2) \frac{1}{2}+(-3) \frac{1}{2} \\
& =-3
\end{aligned}
$$

(c) If a function f is continuous on $[l, r]$, then it is integrable on $[l, r]$ and therefore the limit of the Riemann sums $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(t_{i}^{*}\right) \Delta t=\int_{l}^{r} f(t) d t$ has the same value for any choice of sample points t_{i}^{*} in each subinterval $\left[t_{i-1}, t_{i}\right]$.
(d) Since $f(t)=1-2 t, t \in[0,2]$, is continuous, by part (c) the value of the integral is the same as the limit of the Riemann sums using as sample points the right endpoints $t_{i}^{*}=t_{i}=\frac{2 i}{n}$ of each subinterval $\left[t_{i-1}, t_{i}\right]$. For each positive integer n, the Riemann sum is

$$
\begin{aligned}
\sum_{i=1}^{n} f\left(t_{i}^{*}\right) \Delta t & =\sum_{i=1}^{n} f\left(t_{i}\right) \frac{2}{n}=\sum_{i=1}^{n} f\left(\frac{2 i}{n}\right) \frac{2}{n}=\sum_{i=1}^{n}\left(1-\frac{4 i}{n}\right) \frac{2}{n} \\
& =\frac{2}{n} \sum_{i=1}^{n} 1-\frac{8}{n^{2}} \sum_{i=1}^{n} i \\
& =\frac{2}{n} n-\frac{8}{n^{2}} \frac{n(n+1)}{2} \\
& =2-4\left(\frac{n+1}{n}\right) .
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$, we get

$$
\begin{aligned}
\int_{0}^{2}(1-2 t) d t & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(t_{i}^{*}\right) \Delta t \\
& =\lim _{n \rightarrow \infty}\left[2-4\left(\frac{n+1}{n}\right)\right] \\
& =2-4 \\
& =-2
\end{aligned}
$$

(e) Between $t=0$ and $t=2$, the area above the t-axis and below the curve $y=f(t)=1-2 t$ is $A_{+}=\frac{1}{4}$ (area of a triangle), and the area below the t-axis and above the curve $y=f(t)=1-2 t$ is $A_{-}=\frac{9}{4}$ (area of a larger triangle). The value of the integral is the net area

$$
\int_{0}^{2}(1-2 t) d t=A_{+}-A_{-}=\frac{1}{4}-\frac{9}{4}
$$

or the difference of areas.
2. Prove both the following statements, using the definition of the integral.
(a) If f and g are integrable on $[l, r]$, then $f+g$ is integrable on $[l, r]$, and

$$
\int_{l}^{r}[f(t)+g(t)] d t=\int_{l}^{r} f(t) d t+\int_{l}^{r} g(t) d t
$$

(b) If f is integrable on $[l, r]$, then for any constant c, the function $c f$ is integrable on $[l, r]$, and

$$
\int_{l}^{r} c f(t) d t=c \int_{l}^{r} f(t) d t
$$

Solution:
(a) Let n be a positive integer, $\Delta t=\frac{r-l}{n}, t_{i}=l+i \Delta t=l+\frac{i(r-l)}{n}$ for $i=0,1, \ldots, n$. Let $t_{i}^{*} \in\left[t_{i-1}, t_{i}\right]$ be any choice of sample point in the i th subinterval, $i=1, \ldots, n$. Then

$$
\begin{aligned}
\sum_{i=1}^{n}\left[f\left(t_{i}^{*}\right)+g\left(t_{i}^{*}\right)\right] \Delta t & =\left[f\left(t_{1}^{*}\right)+g\left(t_{1}^{*}\right)\right] \Delta t+\left[f\left(t_{2}^{*}\right)+g\left(t_{2}^{*}\right)\right] \Delta t+\cdots+\left[f\left(t_{n}^{*}\right)+g\left(t_{n}^{*}\right)\right] \Delta t \\
& =f\left(t_{1}^{*}\right) \Delta t+g\left(t_{1}^{*}\right) \Delta t+f\left(t_{2}^{*}\right) \Delta t+g\left(t_{2}^{*}\right) \Delta t+\cdots+f\left(t_{n}^{*}\right) \Delta t+g\left(t_{n}^{*}\right) \Delta t \\
& =f\left(t_{1}^{*}\right) \Delta t+f\left(t_{2}^{*}\right) \Delta t+\cdots+f\left(t_{n}^{*}\right) \Delta t+g\left(t_{1}^{*}\right) \Delta t+g\left(t_{2}^{*}\right) \Delta t+\cdots+g\left(t_{n}^{*}\right) \Delta t \\
& =\sum_{i=1} f\left(t_{i}^{*}\right) \Delta t+\sum_{i=1} g\left(t_{i}^{*}\right) \Delta t
\end{aligned}
$$

and taking the limit as $n \rightarrow \infty$ we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[f\left(t_{i}^{*}\right)+g\left(t_{i}^{*}\right)\right] \Delta t & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(t_{i}^{*}\right) \Delta t+\lim _{n \rightarrow \infty} \sum_{i=1}^{n} g\left(t_{i}^{*}\right) \Delta t \\
& =\int_{l}^{r} f(t) d t+\int_{l}^{r} g(t) d t
\end{aligned}
$$

since f and g are both integrable on $[l, r]$. Therefore the limit exists and has the value $\int_{l}^{r} f(t) d t+\int_{l}^{r} g(t) d t$, for any choice of sample points $t_{i}^{*} \in\left[t_{i-1}, t_{i}\right]$, so $f+g$ is integrable on $[l, r]$ and we can write

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[f\left(t_{i}^{*}\right)+g\left(t_{i}^{*}\right)\right] \Delta t=\int_{l}^{r}[f(t)+g(t)] d t=\int_{l}^{r} f(t) d t+\int_{l}^{r} g(t) d t
$$

(b) Let n be a positive integer, $\Delta t=\frac{r-l}{n}, t_{i}=l+i \Delta t=l+\frac{i(r-l)}{n}$ for $i=0,1, \ldots, n$. Let $t_{i}^{*} \in\left[t_{i-1}, t_{i}\right]$ be any choice of sample point in the i th subinterval, $i=1, \ldots, n$, and let c be a constant. Then

$$
\begin{aligned}
\sum_{i=1}^{n}\left[c f\left(t_{i}^{*}\right)\right] \Delta t & =\left[c f\left(t_{1}^{*}\right)\right] \Delta t+\left[c f\left(t_{2}^{*}\right)\right] \Delta t+\cdots+\left[c f\left(t_{n}^{*}\right)\right] \Delta t \\
& =c\left[f\left(t_{1}^{*}\right) \Delta t+f\left(t_{2}^{*}\right) \Delta t+\cdots+f\left(t_{n}^{*}\right) \Delta t\right] \\
& =c \sum_{i=1}^{n} f\left(t_{i}^{*}\right) \Delta t
\end{aligned}
$$

and taking the limit as $n \rightarrow \infty$ we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[c f\left(t_{i}^{*}\right)\right] \Delta t & =c \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(t_{i}^{*}\right) \Delta t \\
& =c \int_{l}^{r} f(t) d t
\end{aligned}
$$

since f is integrable on $[l, r]$. Therefore the limit exists and has the value $c \int_{l}^{r} f(t) d t$, for any choice of sample points $t_{i}^{*} \in\left[t_{i-1}, t_{i}\right]$, so $c f$ is integrable on $[l, r]$ and we can write

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[c f\left(t_{i}^{*}\right)\right] \Delta t=\int_{l}^{r}[c f(t)] d t=c \int_{l}^{r} f(t) d t
$$

3. Let

$$
f(t)= \begin{cases}1 & \text { if } 1 \leq t \leq \sqrt{2} \\ 2 & \text { if } \sqrt{2}<t \leq 2\end{cases}
$$

and note that this function is not continuous on $[1,2]$.
(a) Prove that f is integrable on [1, 2], and calculate $\int_{1}^{2} f(t) d t$ using the definition of the integral: let n be a positive integer and use a regular partition $1=t_{0}<t_{1}<t_{2}<\cdots<t_{n-1}<t_{n}=2$ of $[1,2]$ into n subintervals of equal width $\Delta t=(2-1) / n=1 / n$, choose sample points $t_{i}^{*} \in\left[t_{i-1}, t_{i}\right]$ in each subinterval $i=1, \ldots, n$, and prove that the limit $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(t_{i}^{*}\right) \Delta t$ exists and is equal for all choices of sample points.
(b) Explain in a sentence or two how some other function f on $[1,2]$ (not the function in part (a)) could be continuous everywhere except at a single point $\sqrt{2}$ in [1, 2], and the limit $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(t_{i}^{*}\right) \Delta t$ does not exist, i.e. f is not integrable on $[1,2]$.

Solution:

(a) Let n be a positive integer, let $\Delta t=\frac{r-l}{n}=\frac{1}{n}$ be the distance between partition points

$$
t_{i}=l+i \Delta t=l+\frac{i(r-l)}{n}=1+\frac{i}{n}
$$

for $i=0,1, \ldots, n$, and form subintervals between consecutive partition points. Let $t_{i}^{*} \in\left[t_{i-1}, t_{i}\right]$ be any choice of sample point in the i th subinterval, $i=1, \ldots, n$.

For every n, the partition points t_{i} (endpoints of the subintervals) are rational numbers. The point of discontinuity $t=\sqrt{2}$ is irrational, so it always lies in the interior of a unique, critical subinterval. So for every n, there exists a unique positive integer i_{n} such that

$$
t_{i_{n}-1}=1+\frac{i_{n}-1}{n}<\sqrt{2}<1+\frac{i_{n}}{n}=t_{i_{n}}
$$

For example,

$$
\begin{gathered}
n=1: t_{0}=1, t_{1}=2 ; t_{0}<\sqrt{2}<t_{1}, i_{n}=i_{1}=1 \\
n=2: t_{0}=1, t_{1}=1.5, t_{2}=2 ; t_{0}<\sqrt{2}<t_{1}, i_{n}=i_{2}=1 \\
n=3: t_{0}=1, t_{1}=1 \frac{1}{3}, t_{2}=1 \frac{2}{3}, t_{3}=2 ; t_{1}<\sqrt{2}<t_{2}, i_{n}=i_{3}=2 \\
n=4: t_{0}=1, t_{1}=1.25, t_{2}=1.5, t_{3}=1.75, t_{4}=2 ; t_{1}<\sqrt{2}<t_{2}, i_{n}=i_{4}=2 \\
n=5: t_{0}=1, t_{1}=1.2, t_{2}=1.4, t_{3}=1.6, t_{4}=1.8, t_{5}=2 ; t_{2}<\sqrt{2}<t_{3}, i_{n}=i_{5}=3 .
\end{gathered}
$$

Furthermore, since the widths $\Delta t=\frac{1}{n}$ of the critical subintervals $\left[t_{i_{n}-1}, t_{i_{n}}\right]$ that contain $\sqrt{2}$ shrink to zero as $n \rightarrow \infty$, both the left endpoints $t_{i_{n}-1}$ and the right endpoints $t_{i_{n}}$ of the critical subinterval converge to $\sqrt{2}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(1+\frac{i_{n}-1}{n}\right)=\sqrt{2}=\lim _{n \rightarrow \infty}\left(1+\frac{i_{n}}{n}\right) \tag{1}
\end{equation*}
$$

We split the Riemann sum into three parts, one part for the subintervals all to the left of $\sqrt{2}$ where we know that $f\left(t_{i}^{*}\right)=1$, one part (a single term) for the subinterval that contains $\sqrt{2}$ where we can't be sure what value $f\left(t_{i_{n}}^{*}\right)$ takes, and one part for the subintervals to the right of $\sqrt{2}$ where we know that $f\left(t_{i}^{*}\right)=2$:

$$
\begin{aligned}
\sum_{i=1}^{n} f\left(t_{i}^{*}\right) \Delta t & =\sum_{i=1}^{i_{n}-1} f\left(t_{i}^{*}\right) \Delta t+f\left(t_{i_{n}}^{*}\right) \Delta t+\sum_{i=i_{n}+1}^{n} f\left(t_{i}^{*}\right) \Delta t \\
& =\sum_{i=1}^{i_{n}-1}(1) \Delta t+f\left(t_{i_{n}}^{*}\right) \Delta t+\sum_{i=i_{n}+1}^{n}(2) \Delta t \\
& =\Delta t \sum_{i=1}^{i_{n}-1} 1+f\left(t_{i_{n}}^{*}\right) \Delta t+2 \Delta t \sum_{i=i_{n}+1}^{n} 1 \\
& =\frac{1}{n}\left(i_{n}-1\right)+f\left(t_{i_{n}}^{*}\right) \frac{1}{n}+\frac{2}{n}\left(n-i_{n}\right) \\
& =\frac{i_{n}-1}{n}+f\left(t_{i_{n}}^{*}\right) \frac{1}{n}+2 \frac{n-i_{n}}{n} .
\end{aligned}
$$

Now taking the limit as $n \rightarrow \infty$, we use (1) and the fact that $f\left(t_{i_{n}}^{*}\right)$ is either 1 or 2 , so is bounded in any case and the limit of the middle term is zero:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(t_{i}^{*}\right) \Delta t & =\lim _{n \rightarrow \infty}\left[\frac{i_{n}-1}{n}+f\left(t_{i_{n}}^{*}\right) \frac{1}{n}+2 \frac{n-i_{n}}{n}\right] \\
& =(\sqrt{2}-1)+0+2(2-\sqrt{2})
\end{aligned}
$$

which can be seen to be the area under the graph of $f(t)$, between $t=1$ and $t=2$.
This limit does not depend on particular choices of sample points t_{i}^{*}, so f is integrable on [1, 2], and we are justified in writing

$$
\int_{1}^{2} f(t) d t=\sqrt{2}-1+2(2-\sqrt{2})=3-\sqrt{2}
$$

The contribution to the Riemann sum from the single term $f\left(t_{i_{n}}^{*}\right) \frac{1}{n}$ near the jump discontinuity shrinks to zero as $n \rightarrow \infty$ and does not affect integrability or the value of the limit.
(b) If some other function f that is continous everywhere in $[1,2]$ except at $\sqrt{2}$ is unbounded near $\sqrt{2}$, then it might not be integrable. The function should "grow fast enough" near the point of discontinuity like the example on p. 55 of the textbook, for example

$$
f(t)= \begin{cases}\frac{1}{t-\sqrt{2}} & \text { if } t \neq \sqrt{2} \\ 0 & \text { if } t=\sqrt{2}\end{cases}
$$

is not integrable.

