1. Let \mathcal{X} be a Banach space and let $T : \mathcal{X} \to \mathcal{X}^*$ be a linear map (not necessarily bounded) satisfying

$$(T(x))(y) = (T(y))(x)$$

for all $x, y \in \mathcal{X}$. Show that T is a bounded operator. (Hint: Use the uniform boundedness principle).

2. Let $\alpha = (\alpha_n)$ be a given sequence of real numbers. Assume that $\sum_n |\alpha_n||x_n| < \infty$ for every element $x = (x_n)$ in ℓ^3. Prove that $\alpha \in \ell^{3/2}$. (Hint: Use the uniform boundedness principle on an appropriate sequence of operators. Also note that the converse of the above statement follows from Hölder inequality).

3. Suppose that (X, μ) is a measure space such that $\mu(X) < \infty$. Let $T : L^2(\mu) \to L^2(\mu)$ be a bounded operator. Suppose that the range of T is contained in $L^3(\mu)$. Show that T is bounded as an operator from $L^2(\mu)$ into $L^3(\mu)$. (Hint: Use the closed graph theorem).

4. Let \mathcal{X} and let \mathcal{Y} be normed vector spaces and let $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. Recall that the adjoint $T^* \in \mathcal{L}(\mathcal{Y}^*, \mathcal{X}^*)$ is defined by $T^* f = f \circ T$ for all $f \in \mathcal{Y}^*$. Show that T^* is injective if and only if the range of T is dense in \mathcal{Y}.

5. Let \mathcal{X} and \mathcal{Y} be two Banach spaces and let $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. In the class, we saw that every finite-rank operator is compact. In this exercise, we prove a partial converse. If T is a compact operator and the range of T is closed in \mathcal{Y}, show that T is a finite-rank operator. (Hint: Use the open mapping theorem).

6. Let $\mathcal{X} = \ell^p$ with $1 \leq p \leq \infty$. Let (λ_n) be a bounded sequence in \mathbb{R}^n. Consider the operator $T \in \mathcal{L}(\mathcal{X}, \mathcal{X})$ defined by

$$Tx = (\lambda_1x_1, \lambda_2x_2, \ldots, \lambda_nx_n, \ldots),$$

where $x = (x_1, x_2, \ldots, x_n, \ldots) \in \ell^p$. Show that T is a bounded operator (Hint: Use the uniform boundedness principle).
where
\[x = (x_1, x_2, \ldots, x_n, \ldots). \]

Show that \(T \) is a compact operator from \(X \) into \(X \) if and only if \(\lambda_n \to 0 \).