MATH 419/545 HW 5

Due March 20, 2020 (at the beginning of the class)

- 1. Exercise 5.3.7 (Here p is irreducible means that S is irreducible. Equivalently [i] = S for all $i \in S$.)
- 2. Exercise 5.3.5
- 3. Let p be a transition function on the countable set S and $i \in S$. Assume for each $j \in S$,

$$\lim_{n \to \infty} p^n(i, j) = \pi(j),$$

where π is a probability measure on S.

- (a) Prove that for any bounded $g: S \to \mathbb{R}$, $\lim_{n\to\infty} E_i(g(X_n)) = \int_S g \, d\pi$.
- (b) Prove that π is a stationary distribution for p.
- 4. Given an example of a stochastic process $\{X_n : n \in \mathbb{Z}_+\}$ on (Ω, \mathcal{F}, P) such that $P_{X_n} = P_{X_0}$ for all n but $\{X_n\}$ is not stationary. Here P_{X_n} denotes the pushforward measure of P under X_n .
- 5. Assume $\{Y_n : n \in \mathbb{Z}_+\}$ are iid with $P(Y_0 = 0) = P(Y_0 = 1) = 0.5$. Let $X_n = Y_n + Y_{n+1}$ for all $n \in \mathbb{Z}_+$.
 - (a) Prove that X is not a (\mathcal{F}_n^X) -Markov chain by showing that $P(X_2 = 2|\mathcal{F}_1^X)$ is not equal to $\phi(X_1)$ for any $\phi: \{0, 1, 2\} \to [0, 1]$.
 - (b) Prove that X is a stationary process.

Practice Problems (do not hand in)

- 1. For any state $i \in S$, [i] is irreducible. Further if i is recurrent, then [i] is closed.
- 2. If $i, j \in S$, then either [i] = [j] or $[i] \cap [j] = \emptyset$.
- 3. Exercise 5.3.1
- 4. Exercise 5.3.2
- 5. Exercise 5.3.4