HW 4

Due March 6, 2020 (at the beginning of the class)

1. Let (S, \mathcal{S}, P) be a probability space. Let $\left(S_{i}, \mathcal{S}_{i}\right)$ be measurable spaces for $i=1,2$. Let $X_{i}:(S, \mathcal{S}) \rightarrow\left(S_{i}, \mathcal{S}_{i}\right)$ be S_{i}-valued random variables for $i=1,2$. Let $\Phi: S_{1} \times S_{2} \rightarrow \mathbb{R}$ be a bounded measurable function with respect to the product σ-field $\mathcal{S}_{1} \times \mathcal{S}_{2}$.
(a) Show that for each $x \in S_{1}$, the function $\omega \rightarrow \Phi\left(x, X_{2}(\omega)\right)$ is a measurable \mathbb{R}-valued function on (S, \mathcal{S}).
(b) By part (a), for all $x \in S_{1}$, we can define

$$
H(x):=\int_{S} \Phi\left(x, X_{2}(\omega)\right) d P(\omega) .
$$

Show that the function $x \mapsto H(x)$ is a measurable \mathbb{R}-valued function on $\left(S_{1}, \mathcal{S}_{1}\right)$.
(c) Let \mathcal{G} be a sub- σ-field of \mathcal{S} such that X_{1} is \mathcal{G}-measurable and X_{2} is independent of \mathcal{G}. Then show that

$$
E\left(\Phi\left(X_{1}, X_{2}\right) \mid \mathcal{G}\right)(\omega)=H\left(X_{1}(\omega)\right)
$$

P-almost surely.
(Hint: Functional Montone Class Theorem for all the three parts)
2. (a) Let (S, \mathcal{S}) denote $\left(\mathbb{Z}_{+}, \mathcal{P}\left(Z_{+}\right)\right)$and let (Ω, \mathcal{F}, P) be a probability space. Let $\left\{Y_{n, k}:(\Omega, \mathcal{F}) \rightarrow(S, \mathcal{S}): n \in \mathbb{Z}_{+}, k \in \mathbb{N}\right\}$ be a collection of iid copies of \mathbb{Z}_{+}-valued random variables, where $(S, \mathcal{S})=$ $\left(\mathbb{Z}_{+}, \mathcal{P}\left(\mathbb{Z}_{+}\right)\right)$. For $i \in S, A \in \mathcal{S}$ define $p: S \times \mathcal{S} \rightarrow[0,1]$ by

$$
p(i, A)=P\left(\sum_{k=1}^{i} Y_{1, k} \in A\right) .
$$

Show that p is a transtion probability on (S, \mathcal{S})
(b) Fix $x_{0} \in \mathbb{Z}_{+}$and define random variables $X_{0} \equiv x_{0}$ and

$$
X_{n+1}=\sum_{k=1}^{X_{n}} Y_{n, k}, \text { for } n \in \mathbb{Z}_{+}
$$

Let $\mathcal{F}_{n}=\sigma\left\{Y_{k, j}: k<n, j \in \mathbb{N}\right\}$. Show that $\left\{X_{n}: n \in \mathbb{Z}_{+}\right\}$is a Markov chain with respect to $\left(\mathcal{F}_{n}\right)$ with transtion probability p and initial distribution $\delta_{x_{0}}$.
3. Consider a Markov chain $\left\{X_{n}: n \in \mathbb{Z}_{+}\right\}$with general state space (S, \mathcal{S}) (not necessarily countable) defined on the cannonical product space $(\Omega, \mathcal{F})=\left(S^{\mathbb{Z}_{+}}, \mathcal{S}^{\mathbb{Z}_{+}}\right)$. If f is a bounded measurable function on S, let

$$
G f(x)=E_{x}\left(f\left(X_{1}\right)\right)-f(x) .
$$

G is called the generator of the Markov chain $\left\{X_{n}: n \in \mathbb{Z}_{+}\right\}$.
We say that h is a harmonic function on the set $D \in \mathcal{S}$ iff $G h(x)=0$ for all $x \in D$.
(a) If h is a bounded harmonic function on S prove that $h\left(X_{n}\right)$ is an $\left(\mathcal{F}_{n}^{X}\right)$-martingale with respect to every P_{x}. If $A \in \mathcal{S}$ and h is a bounded function on S which is harmonic on A^{c}, show that $h\left(X_{n \wedge V_{A}}\right)$ is an $\left(\mathcal{F}_{n}^{X}\right)$-martingale with respect to every P_{x}. Here $V_{A}:=\inf \left\{n \geq 0: X_{n} \in A\right\}$ is as defined in Exercise 5.2.11
(b) Let $A \in \mathcal{S}$ satisfy $P_{x}\left(V_{A}<\infty\right)=1$ for every $x \in S$. Let $f: A \rightarrow \mathbb{R}$ be bounded and measurable. Prove that $h(x)=E_{x}\left(f\left(X_{V_{A}}\right)\right)$ is the unique bounded function on S which is harmonic on A^{c} and equals f on A.
(c) If $f: S \rightarrow \mathbb{R}$ is bounded and measurable, prove that $M_{n}^{f}=f\left(X_{n}\right)-$ $\sum_{i=0}^{n-1} G f\left(X_{i}\right)$ is an $\left(\mathcal{F}_{n}^{X}\right)$-martingale with respect to every P_{x}.
4. Exercise 5.2.6. (S is countable. You may assume that $k \in \mathbb{N}$).
5. Exercise 5.2.11. (S is countable. For (i) you need to verify that $g(x)$ is finite for all x. For (ii) you should verify the integrability of the martingale. For (ii) assume that the series in $\left(^{*}\right)$ is absolutely summable. For (iii) $g(x)=E_{x} \tau_{A}$ should read $g(x)=E_{x} V_{A}$ instead)

Practice Problems (do not hand in)

1. Let $Z:(\Omega, \mathcal{F}) \rightarrow(S, \mathcal{S})$ be a measurable map and let P be a probability measure on (Ω, \mathcal{F}). Show that
$\nu(A)=P\left(Z^{-1}(A)\right)=P(\{Z \in A\})=P(\{\omega \in \Omega: Z(\omega) \in A\}), \quad$ for all $A \in \mathcal{S}$,
defines a probability measure on (S, \mathcal{S}). This measure ν is called the 'pushforward measure of P under f '.
2. Let $p: S \rightarrow \mathcal{S} \rightarrow[0,1]$ be a transition probabilty. Show that for all $f \in b \mathcal{S}$, the map

$$
x \mapsto \int_{S} f(y) p(x, d y)
$$

is also in $b \mathcal{S}$. (Hint: FMCT).
3. Let (Ω, \mathcal{F}, P) be a probability space and let $Y:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, \mathcal{B})$ be a random variable. For all $x \in \mathbb{R}$, defined $p: \mathbb{R} \times \mathcal{B} \rightarrow[0,1]$ be defined by

$$
p(x, A)=P(x+Y \in A) .
$$

Let $x_{0} \in \mathbb{R}$. Let $Y_{j}: \Omega \rightarrow \mathbb{R}$ be iid copies of Y, for $j \in \mathbb{N}$ and let $\mathcal{F}_{n}=\mathcal{F}_{n}^{Y}=\sigma\left(Y_{1}, \ldots, Y_{n}\right)$. Let $X_{n}=x_{0}+\sum_{j=1}^{n} Y_{j}$. Show that p is a transition probability on $(\mathbb{R}, \mathcal{B})$ and that X_{n} is a Markov chain with respect to \mathcal{F}_{n} with transition probability p.
4. Let $\left\{X_{n}: n \in \mathbb{Z}_{+}\right\}$be a Markov chain on (Ω, \mathcal{F}, P) with respect to the filtration $\left(\mathcal{F}_{n}\right)$. Show that the map $X:(\Omega, \mathcal{F}) \rightarrow\left(S^{\mathbb{Z}_{+}}, \mathcal{S}^{\mathbb{Z}_{+}}\right)$defined by

$$
\omega \mapsto\left(X_{0}(\omega), X_{1}(\omega), \ldots\right)
$$

is measurable. (Hint: $\pi-\lambda$ theorem).
Remark: Practice problems 1. and 4. can be used to justify the probability measure on the cannonical space (the measure P_{X} on $\left(S^{\mathbb{Z}_{+}}, \mathcal{S}^{\mathbb{Z}_{+}}\right)$ given the initial distribution μ and the transition probability p defined in class is unique). The measure P_{X} defined in class is simply the pushforward of P under the map X.
5. Exercise 5.2.7.
6. Let $\left\{X_{n}: n \in \mathbb{Z}_{+}\right\}$be a stochastic process and let $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{Z}_{+}}$be a filtration on (Ω, \mathcal{F}, P). Let $S, T: \Omega \rightarrow \mathbb{Z}_{+} \cup\{\infty\}$ be \mathcal{F}_{n}-stopping times. Show the following:
(a) If X_{∞} is \mathcal{F}-measurable and X_{n} is $\left(\mathcal{F}_{n}\right)$-adapted, then $\omega \mapsto X_{T(\omega)}(\omega)$ is \mathcal{F}_{T}-measurable.
(b) If $S \leq T$ then $\mathcal{F}_{S} \subseteq \mathcal{F}_{T}$.
(c) $\mathcal{F}_{S \wedge T}=\mathcal{F}_{S} \cap \mathcal{F}_{T}$.
(d) If $F \in \mathcal{F}_{S \vee T}$ then $F \cap\{S \leq T\} \in \mathcal{F}_{T}$.
(e) $\mathcal{F}_{S \vee T}=\sigma\left(\mathcal{F}_{S} \cup \mathcal{F}_{T}\right)$.
7. Let $X_{i}:(\Omega, \mathcal{F}) \rightarrow\left(S_{i}, \mathcal{S}_{i}\right)$ be measurable for $i=1,2$. Show that the map $\omega \mapsto\left(X_{1}(\omega), X_{2}(\omega)\right)$ is a measurable map from (Ω, \mathcal{F}) to the product space with product σ-field $\left(S_{1} \times S_{2}, \mathcal{S}_{1} \times \mathcal{S}_{2}\right)$ (we used this fact in the proof of Strong Markov property. Hint: $\pi-\lambda$ theorem).
8. Let (Ω, \mathcal{F}, P) be a probability space and let \mathcal{P} be a π-system such that $\mathcal{P} \subset \mathcal{F}, \Omega \in \mathcal{F}$. Let $\mathcal{G}=\sigma(\mathcal{P})$. Let X and Y be two integrable random variables such that X is \mathcal{F}-measurable and Y is \mathcal{G}-measurable. Suppose that

$$
\int_{A} X d P=\int_{A} Y d P \quad \text { for all } A \in \mathcal{P}
$$

then show that

$$
E(X \mid \mathcal{G})=Y \quad \text { almost surely. }
$$

