MATH 419/545 HW 2

Due January 31, 2019 (at the beginning of the class)

Notation: $\mathbb{Z}_+ = \{0, 1, 2, \ldots\}, \mathbb{N} = \{1, 2, 3, \ldots\}.$

1. Assume $\{X_n : n \in \mathbb{Z}_+\}$ are independent $\{0, 1\}$ -valued random variables such that $P(X_n = 1) = 2^{-n}$ for all $n \in \mathbb{Z}_+$. Define

$$L = \sup\left\{n \in \mathbb{Z}_+ : X_n = 1\right\}.$$

- (a) Prove that $L < \infty$ almost surely.
- (b) Prove that L is not a (\mathcal{F}_n^X) -stopping time.
- 2. Let $\{Y_i : i \in \mathbb{N}\}$ be independent mean 0 random variables such that $|Y_i| \leq K$ for all $i \in \mathbb{N}$. Let $S_n = \sum_i^n Y_i$. Prove that either (a) S_n converges almost surely or (b) $P(\{\limsup_{n \to \infty} S_n = \infty \text{ and } \liminf_{n \to \infty} S_n = -\infty\}) = 1.$
- 3. Exercise 4.2.5
- 4. Exercise 4.2.6 (for part (ii) assume that $E |\log Y_1| < \infty$).
- 5. Exercise 4.6.4

Practice Problems (do not hand in)

- 1. Try to prove (or learn the proofs from the text) Theorem 4.1.10 (Conditional Jensen inequality), and Theorem 4.6.2 (a sufficient condition for uniform integrability).
- 2. Read the proof of Theorem 4.2.11 (Martingale convergence theorem).
- 3. TRUE OR FALSE: If $(X_n : n \in \mathbb{N})$ is a (\mathcal{F}_n) -submartingale, then so is $(X_n^+ : n \in \mathbb{N})$.
- 4. If S, T are (\mathcal{F}_n) -stopping times then show that $S \vee T, S \wedge T$ and S + T are also (\mathcal{F}_n) -stopping times.

- 5. Exercises 4.2.1, 4.2.2, 4.2.3, 4.2.4.
- 6. Let $N: \Omega \to \mathbb{N}$ denote a random variable with $P(N = n) = \frac{c}{n^2}$, where c > 0 is chosen so that $\sum_{n \in \mathbb{N}} cn^{-2} = 1$. Let $X_i : i \in \mathbb{N}$ be iid random variables that are independent of N such that $P(X_i = 1) = P(X_i = -1) = \frac{1}{2}$. Let $\mathcal{F}_n, n \in \mathbb{N}$ denote the σ -field $\sigma(N, X_1, \ldots, X_n)$. Let $S_n = \sum_{k=1}^n X_k, T = \inf \{n \in \mathbb{N} : |S_n| = N\}$. Show that
 - (a) S_n is an \mathcal{F}_n -martingale.
 - (b) T is a \mathcal{F}_n -stopping time.
 - (c) The martingale $S_{n\wedge T}$ converges almost surely, but $E(|S_{n\wedge T}|) = EN = \infty$. (This shows that unlike Theorem 4.2.11, one cannot take $E|X| < \infty$ in Theorem 4.3.1 even if P(C) = 1).
- 7. Give an example of a collection of random variables that is L^1 -bounded but not uniformly integrable.