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Abstract

We construct the first examples of subordinated Brownian motion (SBM) that do not satisfy the
elliptic Harnack inequality. In our first theorem, we show that if X = (Xt)t≥0 is an isotropic unimodal
Lévy process, and X satisfies certain criteria (involving the jump kernel of X and the distribution of the
location of the process upon first exiting balls of various sizes) then X does not satisfy EHI. (Note that
the class of isotropic unimodal Lévy processes is larger than the class of SBMs, so any SBM that satisfies
our criteria fails to satisfy EHI.) We then check that many specific SBMs do indeed satisfy our criteria,
and thus do not satify EHI.
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2.1 Lévy system formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 A lemma concerning jumps of intermediate size . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 “Preferred side” lemmas 8

4 Proof of Proposition 1.2 13
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1 Introduction

Subordinated Brownian motion plays a central role in the understanding of jump processes as it serves as
a model example of jump processes analogous to the role played by Brownian motion for diffusions. Heat
kernel estimates and Harnack inequalities are often easier to obtain for subordinated Brownian motion.
Using recent progress in stability of Harnack inequalities and heat kernel bounds for jump processes this
leads to similar estimates for a large family of jump processes [CKW, Section 5.2].

Harnack inequalities are the subject of significant research in probability, harmonic analysis, and partial
differential equations. The elliptic Harnack inequality (EHI, see Section 1.2) applies to harmonic functions,
and says that if a non-negative function h is harmonic on a ball B, then for any points x, y on a smaller
ball concentric to B, the ratio h(x)/h(y) is bounded both above and below. Applications of elliptic Harnack
inequality include regularity of harmonic functions, estimates of heat kernel and Green’s function. There is
an analogous inequality, the parabolic Harnack inequality (PHI), which implies Hölder continuity for caloric
functions. Since every harmonic function lifts to a caloric function, the parabolic Harnack inequality implies
the elliptic Harnack inequality.

Recall that a Lévy process is a stochastic process with independent and stationary increments. A subor-
dinated Brownian motion (or SBM ) is a process of the form X = (Xt)t≥0 = (W (St))t≥0, where S is a Lévy
process on [0,∞) such that S0 = 0, and W is a standard Brownian motion on R

d, independent of S.
There have been many results ([KM], [G], [CKW]) showing that various classes of SBMs satisfy the elliptic

Harnack inequality (or close variations of it). The settings of [G] and (especially) [CKW] are more general,
but both apply to many SBMs. Despite this progress, the following question remained open: Does every
suborinated Brownian motion satisfy the elliptic Harnack inequality? The goal of this paper is to provide
a negative answer to this question. In this paper, we produce many counterexamples and give criteria that
can be checked to verify that a subordinated Brownian motion fails to satisfy the EHI. Our work can be
viewed as a step towards the following motivating question: find necessary and sufficient conditions for a
subordinated Brownian motion to satisfy the elliptic Harnack inequality.

In fact, our results do not apply only to SBMs, but to the larger class of isotropic unimodal Lévy processes.
A Lévy process is a stochastic process X = (Xt)t≥0 with independent and stationary increments; in other
words, a process such that

Xt −Xs
d
= Xt−s for all t ≥ s ≥ 0

and {
Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtn −Xtn−1

}
are independent for all t0 ≤ t1 ≤ · · · ≤ tn−1 ≤ tn.

Such a process is said to be isotropic unimodal if for all t > 0, there exists a non-increasing function
mt : (0,∞)→ [0,∞) such that the increments of X follow distribution

P(Xt −X0 ∈ A) =

∫
A

mt(|x|) dx for all measurable A such that 0 /∈ A.

More generally, a measure µ is called isotropic unimodal if there exists a non-increasing m : (0,∞)→ [0,∞)
such that µ(dx) = m(|x|) dx for all x 6= 0, and a process is isotropic unimodal if its increments are.

Bass and Chen [BC, Section 3] give an example of a Lévy process on R
d that does not satisfy the

elliptic Harnack inequality. The process they consider has a high degree of non-regularity (it is not isotropic
unimodal, and its Lévy measure is singular with respect to the Lebesgue measure), and they exploit this in
their proof. Grzywny and Kwaśnicki [GK, Example 5.5] give another process, this one with more regularity,
that also fails to satisfy the elliptic Harnack inequality. The process considered in [GK, Example 5.5] is an
isotropic unimodal Lévy process, but not a subordinated Brownian motion as the jump sizes are uniformly
bounded from above which is crucial to their proof.

Our main argument is similar to those of [BC, Section 3] and [GK, Example 5.5], with a significant
amount of additional work to adapt them for processes with a higher degree of regularity. Our proof provides
some insight into what kinds of non-regularity are necessary for EHI to be violated. Our most highly-regular
counterexample is Example 5.8: a subordinated Brownian motion, with a subordinator whose Lévy measure is
absolutely continuous with respect to the Lebesgue measure, with a density that is monotonically decreasing.
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Let X = (Xt)t≥0 be an isotropic unimodal Lévy process on R
d. We will assume that X is right-

continuous, with left-limits (cadlag). For all t > 0, we will use the notation Xt− or X(t−) to denote the
left-limit lims↗tXs.

For all x ∈ Rd, let Px be the probability measure P (·|X0 = x). Let Ex be the corresponding expectation.

For all x0 =
(
x
(0)
1 , . . . , x

(0)
d

)
∈ Rd and r > 0, let B(x0, r) denote the open Euclidean ball

B(x0, r) :=

(x1, . . . , xd) :

√√√√ d∑
j=1

(
xj − x(0)j

)2
< r

 .

For all x0 =
(
x
(0)
1 , . . . , x

(0)
d−1

)
∈ Rd−1 and r > 0, it will also help to consider the (d− 1)-dimensional ball

B(d−1)(x0, r) :=

(x1, . . . , xd−1) :

√√√√d−1∑
j=1

(
xj − x(0)j

)2
< r

 . (1.1)

We denote exit times of X by

τU := inf{t ≥ 0 : Xt /∈ U} for all U ⊆ R
d. (1.2)

1.1 Jump kernel

Before we state our main result, let us briefly discuss the jump kernel.
Let X = (Xt)t≥0 be an isotropic unimodal Lévy process on R

d. Let (E ,F) be the associated regular
Dirichlet form on (E ,F).

By the Beurling-Deny formula [FOT, Theorem 3.2.1], E can be decomposed into a strongly local compo-
nent, a jumping component, and a killing component:

E(f, g) = Ec(f, g) +

∫
Rd×Rd\diag

(f(x)− f(y))(g(x)− g(y)) Ĵ(dx, dy) +

∫
Rd

f(x)g(x) k̂(dx)

where diag denotes the diagonal of Rd × Rd, Ec is a strongly local symmetric form, Ĵ is a symmetric non-
negative Radon measure (which we call the jumping measure), and k̂ is a non-negative Radon measure (which
we call the killing measure).

Since X is a Lévy process, X is never killed, so the killing measure is identically 0. However, X can still
have both a strongly local (diffusion) component and a jump component.

Since X is isotropic unimodal, it follows from the (1) =⇒ (3) implication of [W, Proposition on page 488]

that there exists a non-increasing function j : (0,∞)→ [0,∞) such that Ĵ(dx, dy) = j(|x− y|) dx dy.
Given two distinct points x, y ∈ Rd, let J(x, y) := j(|x− y|). We refer to the function J on Rd×Rd \diag

as the jump kernel of X.
Given a point x ∈ Rd and a measurable set U ⊆ R

d \ {x}, let

J(x,U) :=

∫
U

J(x, y) dy.

If X(t) 6= X(t−) for some t > 0, we say that the process X has a jump of displacement X(t)−X(t−) at
time t. We may also say that X has a jump of magnitude |X(t)−X(t−)| at time t.

There is a probabilistic interpretation of the jump kernel. For all measurable A ⊆ R
d \ 0 such that

0 < J(0, A) <∞, jumps with displacement in A occur according to a Poisson process with rate J(0, A).

1.2 Harmonic functions and elliptic Harnack inequality

There are many formulations of harmonicity in the context of general symmetric Hunt processes (see [C]).
For simplicity, we will use the same formulation as [KM].
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Let X be a non-trivial Lévy process on R
d. By non-trivial we mean that the process in not identically

zero. Let D be an open subset of Rd. We say that a function h : Rd → R is harmonic (with respect to X)
on D if for all open sets E whose closure is compact and contained in D, we have the mean-value property

h(x) = Ex [h(XτE )] for all x ∈ E.

We say that X satisfies the elliptic Harnack inequality (EHI) if there exist a C > 0 and a κ ∈ (0, 1) such
that for all x0 ∈ Rd and r > 0, if h is a non-negative function that is harmonic on B(x0, r), then

h(x) ≤ Ch(y) for all x, y ∈ B(x0, κr). (1.3)

Note that EHI does not depend on κ. If EHI holds some κ ∈ (0, 1), it will still hold if κ is replaced by any
other value in (0, 1) (and C is replaced with an appropriate value).

1.3 Subordinated Brownian motion

Recall that we are particularly interested in the case where X is a subordinated Brownian. Therefore, let us
review some of the basic properties of subordinated Brownian motions.

Let S = (St)t≥0 be a non-decreasing, right-continuous Lévy process on [0,∞), such that S0 = 0. By a
Lévy process, we mean a stochastic process with independent and stationary increments.

Let us review some of the basic properties of the S. There exists a function φ : (0,∞) → (0,∞) called
the Laplace exponent such that

Ee−λSt = e−φ(λ) t for all λ > 0, t > 0.

The Laplace exponent is a Bernstein function, meaning that φ is smooth, φ(k) ≥ 0 for all k ∈ {0, 1, 3, 5, 7, . . . },
and φ(k) ≤ 0 for all k ∈ {2, 4, 6, . . . }. Also, φ has a representation of the form

φ(λ) = γλ+

∫
(0,∞)

(1− e−λx)µ(dx)

for some γ ≥ 0 (which we call the drift) and some measure µ on (0,∞) (which we call the Lévy measure)
such that

∫
(0,∞)

(1 ∧ x)µ(dx) < ∞. The drift and Lévy measure of S have a probabilistic interpretation.

The process S increases due to both continuous linear growth (with rate γ) and jumps. For all measurable
A ⊆ (0,∞) such that 0 < µ(A) < ∞, the number of jumps of magnitude in A that occur by time t is
Poisson(µ(A) · t). For all t > 0, St is equal to γt plus the sum of the magnitudes of all the jumps that have
occurred by time t.

Let W = (W (t))t≥0 be a standard Brownian motion on R
d, independent from S. The heat kernel of W

is

pW (t, x, y) = (2πt)−d/2 exp

(
−|x− y|

2

2t

)
.

Let X := W (St) for all t. We refer to the process X = (Xt)t≥0 as a subordinated Brownian motion
(SBM), and we refer to S as the subordinator of X. Note that a SBM is uniquely determined by γ (the drift
of its subordinator) and µ (the Lévy measure of its subordinator).

If γ = 0 and µ((0,∞)) > 0, then X is a pure-jump process on R
d. If γ > 0 but µ((0,∞)) = 0, then X

is a Brownian motion, with γ times the speed of a standard Brownian motion. If γ > 0 and µ((0,∞)) > 0,
then X is a mixed diffusion/jump process.

By [O, Theorem 2.1, formula (2.8)], the jump kernel of a SBM is

J(x, y) =

∫
(0,∞)

(2πs)−d/2 exp

(
−|x− y|

2

2s

)
µ(ds).

As usual, let j(r) denote the common value of J(x, y) for all x, y ∈ Rd such that |x− y|= r:

j(r) =

∫
(0,∞)

(2πs)−d/2 exp

(
− r

2

2s

)
µ(ds). (1.4)

Note also that the jump kernel is non-increasing: j(R) ≤ j(r) whenever R ≥ r > 0.
Therefore, by the (3) =⇒ (1) implication of [W, Proposition on page 488], every SBM is an isotropic

unimodal Lévy process.
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Figure 1.1: Sketch of the setting of Proposition 1.2
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1.4 Main result

We are now ready to state our main result.

Theorem 1.1. Fix constants c and α such that 0 <
√

29α ≤ c < 1. Let X = (Xt)t≥0 be an isotropic
unimodal Lévy process, and suppose there exists a sequence (Rn) ⊆ (0,∞) such that

j(Rn)

j(cRn)
→ 0 and P0

(
XτB(0,αRn)

∈ B(0, 10Rn)
)
→ 0. (1.5)

Then X does not satisfy EHI.

The key ingredient for the proof of Theorem 1.1 is the following proposition, which is proved in Section
4.

Proposition 1.2. Fix some constants c and α such that 0 <
√

29α ≤ c < 1. Let X = (Xt)t≥0 be an
isotropic unimodal Lévy process. Let R > 0. Let A and U be the cylinders

A := (−R,R)×B(d−1)(0, R), U :=
(

(1 + α)R, (3 + α)R
)
×B(d−1)(0, R).

Let f be the function
f(x) := Px(XτA ∈ U).

Let x0 := (1− α)Re1, where e1 is the unit vector (1, 0, 0, . . . , 0).
Then

f(−x0) ≤
(
α−d

j(R)

j(cR)
+ 2P0

(
XτB(0,αR)

∈ B(0, 10R)
))

sup
B(0,(1−α/2)R)

f. (1.6)

Figure 1.1 contains a sketch of the set-up of Proposition 1.2. For simplicity, we use d = 2 in our sketch,
so the “cylinders” are simply squares.

The proof of Theorem 1.1 from Proposition 1.2 is simple.

Proof of Theorem 1.1. Assume for the sake of contradiction that X satisfies EHI. Let C be the constant
from (1.3), for κ = 1−α/2. Whenever a function h is non-negative and harmonic on a ball B(x0, r), we have

h(x) ≥ C−1h(y) for all x, y ∈ B
(
x0,
(

1− α

2

)
r
)
. (1.7)
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Let (Rn) be a sequence satisfying (1.5). For each n, let An and Un be the cylinders

An := (−Rn, Rn)×B(d−1)(0, Rn), Un := ((1 + α)Rn, (3 + α)Rn)×B(d−1)(0, Rn).

Let xn := (1− α)Rne1, and let fn be the function

fn(x) := Px

(
XτAn

∈ Un
)
.

(These are the A, U , x0, and f from Proposition 1.2 when R = Rn.)
We claim that fn is harmonic on An. Let E be an open set whose closure is compact and contained in

An. Fix x ∈ E. We would like to show that fn(x) = Ex [fn(XτE )]. Let (Ft)t≥0 be the minimal complete,
right-continuous filtration of σ-fields such that X is adapted to (Ft). Then τE is an (Ft)-stopping time, so

fn(xn) = Px

(
XτAn

∈ Un
)

= Ex

[
PτE

(
XτAn

∈ Un
)]

(by the Strong Markov property)

= Ex [fn (XτE )] .

By Proposition 1.2 and (1.5),
fn(−xn) ≤ o(1) · sup

B(0,(1−α/2)R)

f.

Thus, for sufficiently large n,

fn(−xn) <
C−1

2
sup

B(0,(1−α/2)R)

f.

However, since −xn ∈ B(0, (1− α/2)Rn), and fn is harmonic on B(0, Rn), (1.7) guarantees that

fn(−xn) ≥ C−1

2
sup

B(0,(1−α/2)R)

f.

This is a contradiction. Thus, X does not satisfy EHI.

The rest of the paper is organized as follows. In Section 2, we discuss some basic preliminary results.
Among these is the Lévy system formula, a tool used in [BC, Section 3], which we will make similar use of.
In Section 3, we prove a technical lemma, involving a (d−1)-dimensional hyperplane that splits the space in
two, and which side of the hyperplane the process is on. In Section 4, we prove Proposition 1.2. In Section 5,
we construct some specific subordinated Brownian motions which violate EHI, by providing examples that
satisfy the condition (1.5) in Theorem 1.1.

1.5 Acknowledgements

We would like to thank Tomasz Grzywny for telling us about his example in [GK], and Stephen Zhang for
his helpful technical advice on how to generate Figure 5.1.

2 Preliminary results

2.1 Lévy system formula

The first key ingredient, in both our proof of Proposition 1.2, and Bass and Chen’s counterexample in
[BC, Section 3], is the Lévy system formula. More general forms of the Lévy system formula exist, but the
following form will be sufficient for our purposes.

Lemma 2.1. Let X = (Xt)t≥0 be a Lévy process on R
d, adapted to a filtration (Ft)t≥0, and suppose X has

a jump kernel J(x, y). Let f be a non-negative measurable function on R
d×Rd that vanishes on the diagonal.

Then, for any x ∈ Rd and any (Ft)-stopping time T ,

Ex

∑
s≤T

f(Xs−, Xs)

 = Ex

[∫ T

0

∫
Rd

f(Xs, y)J(Xt, y) dy ds

]
.
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Note that X does not need to be a pure-jump process for Lemma 2.1 to apply. There can be both a
diffusion component and a jump component. For a proof in a much more general setting, see [CF, Theorem
4.3.3(ii)].

In particular, if A and U are disjoint open sets, f is the function f(x, y) = 1{x∈A,y∈U}, and T is the
stopping time τA (as defined in (1.2)), then the Lévy system formula gives us

Px (XτA ∈ U) = Ex

[∫ τA

0

J(Xs,U) ds

]
for all x ∈ A. (2.1)

Equation 2.1 will be used in several places in the proof of Proposition 1.2, in which one of the primary
objects is a function of the form f(x) = Px (XτA ∈ U) on A.

2.2 A lemma concerning jumps of intermediate size

The following observation will also be helpful in the proof of Proposition 1.2.
Consider the scenario shown in Figure 2.1. There are two disjoint sets E1 and E2. We consider two

concentric balls B(x, r1) and B(x, r2), both centered at a point x ∈ E1. The smaller ball is small enough
that it does not intersect E2, while the larger ball is so large that it contains all of E1 and E2.

Suppose we are interested in the probability Px

(
XτE1

∈ E2

)
. Recall from (1.2) that XτE1

is the first
point outside of E1 that the process X reaches. As we will show, there is no way for XτE1

to be in E2

without XτB(x,r1))
being in B(x, r2). Therefore,

Px

(
XτE1

∈ E2

)
≤ Px

(
XτB(x,r1)

∈ B(x, r2)
)
.

This allows us to replace a probability involving potentially complicated sets E1 and E2 with one involving
nice open balls. This will be especially helpful in situations such as Theorem 1.1, in which the location of X
at the exit time of a small ball B(0, αRn) is unlikely to be inside even the much larger ball B(0, 10Rn).

This observation is turned into a proof in the following lemma. Because X is translation-invariant, we
may also recenter the balls at the origin.

Lemma 2.2. Let X = (Xt)t≥0 be a Lévy process on a metric measure space. Suppose there exist two disjoint
open sets E1 and E2, a point x ∈ E1, and positive numbers r2 > r1 > 0 such that

� The ball B(x, r1) does not intersect E2.

� The ball B(x, r2) contains both E1 and E2.

Then
Px

(
XτE1

∈ E2

)
≤ P0

(
XτB(0,r1)

∈ B(0, r2)
)
.

Proof. First, we will show that

{X0 = x} ∩
{
XτE1

∈ E2

}
⊆
{
XτB(x,r1)

∈ B(x, r2)
}
. (2.2)

Suppose the process begins at x, and XτE1
is in E2. There are two ways that this can happen: either

the process exits B(x, r1) before it exits E1, and then enters E2 at the moment if first exits E1; or the
process leaves B(x, r1) and E1 at the same time, and enters E2 at the moment it does so. In the first case,
XτB(x,r1)

∈ E1. In the second case, XτB(x,r1)
∈ E2. Since both E1 and E2 are contained in B(x, r2), we have

XτB(x,r1)
∈ B(x, r2) either way. This completes the proof of (2.2).

By taking probabilities of these events, and then applying translation-invariance to recenter,

Px

(
XτE1

∈ E2

)
≤ Px

(
XτB(x,r1)

∈ B(x, r2)
)

= P0

(
XτB(0,r1)

∈ B(0, r2)
)
.
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Figure 2.1: Sketch of the setting of Lemma 2.2
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3 “Preferred side” lemmas

In this section, we prove two technical results, which we call the “Preferred side” lemmas (for reasons that
will be made clear). One of these will be used in the proof of Proposition 1.2.

Let us first describe the setting. Let H be a (d− 1)-dimensional subspace of Rd. Note that H divides Rd

into two half-spaces; let us call these half-spaces V and W . (For simplicity, we can take V to be closed and
W to be open, so the two half-spaces partition the full space, and H ⊆ V .)

Fix H, V , and W for the remander of this section. Let us call V the “preferred side.” The results of
this section will concern situations in which V is “favored” over W in some way: the process begins in V , a
certain function takes larger values in V than in W , or a certain set has a larger intersection with V than
with W . From these asymmetries, we derive results that are intuitive, but technically difficult to prove.

First, let us introduce some notation. For all x ∈ Rd, let x′ denote the reflection of x across the hyperplane
H. Also, let

ϕ(x) :=

{
x : if x ∈ V
x′ : if x ∈W.

(3.1)

In other words, ϕ(x) is equal to whichever one of x or x′ is in the preferred side V .
Consider the process ϕ(X) = (ϕ(Xt))t≥0. Let (Gt)t≥0 be the smallest complete, right-continuous filtration

that ϕ(X) is adapted to. This process behaves somewhat analogously to reflected Brownian motion, which
always stays on one side of a boundary (the difference being that ϕ(X) can have jumps in addition to
diffusion).

If we look only at the history of ϕ(X), we lose track of which side of H the original process X is on.
However, the following lemma tells us that if X begins on the preferred side, and we condition on the history
of ϕ(X), then for any (Gt)-stopping time T , XT is more likely than not to be on the preferred side.

Lemma 3.1. Let X = (Xt)t≥0 be an isotropic unimodal Lévy process on R
d. Let H be a (d−1)-dimensional

hyperplane in R
d, and let V and W be the two half-spaces that H divides Rd into, with V closed and W open.

For all x ∈ Rd, let x′ denote the reflection of x across H. Let ϕ(X) = (ϕ(Xt))t≥0, where ϕ is as defined in
(3.1). Let (Gt)t≥0 be the minimal complete, right-continuous filtration such that ϕ(X) is adapted to (Gt).

Then for any v ∈ V and t ≥ 0,

Pv (Xt ∈ V |Gt ) ≥
1

2
almost surely.

Furthermore, let E be a pre-compact subset of V , which is open in the relative topology on V . Let
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τ
ϕ(X)
E := inf{t : ϕ(Xt) /∈ E}. Then for any v ∈ V ,

Pv

(
X
τ
ϕ(X)
E

∈ V
∣∣∣Gτϕ(X)

E

)
≥ 1

2
almost surely.

We do not prove Lemma 3.1 just yet, since it is necessary to develop some more machinery first, but let us
briefly summarize how the proof will unfold. We will construct a joint process (Yt, Zt)t≥0, which shares the
law of (Xt, ϕ(Xt))t≥0, but where Z is constructed first. Then, in order to determine Y , we must choose at
every jump in Z whether Yt jumps across H or not; we determine this using a random structure independent
from Z, reverse-engineered so that the law of Y matches that of X. Then we can use the random structure
independent of Z to calculate Pv (XT ∈ V |G ).

We will then use Lemma 3.1 to prove the following result. To put it imprecisely, this result says that
if there exists an open set D which has a larger intersection with the preferred side than the non-preferred
side, and a non-negative function g on D which takes larger values on the preferred side, then

∫ τD
0

g(Xt) dt
should be larger for initial values on the preferred side than on the non-preferred side.

Lemma 3.2. Let X = (Xt)t≥0 be an isotropic unimodal Lévy process on R
d. Let H be a (d−1)-dimensional

hyperplane in R
d, and let V and W be the two half-spaces that H divides Rd into, with V closed and W open.

For all x ∈ Rd, let x′ denote the reflection of x across H, and let ϕ(x) be as defined in (3.1).
Let D be an open subset of Rd, such that for all w ∈W ,

w ∈ D =⇒ w′ ∈ D. (3.2)

Let g : D → [0,∞) be a measurable function such that for all w ∈W ,

w ∈ D =⇒ g(w) ≤ g(w′). (3.3)

Then, for all w ∈ D ∩W ,

Ew

[∫ τD

0

g(Xt) dt

]
≤ Ew′

[∫ τD

0

g(Xt) dt

]
.

Note that Lemma 3.2 will be directly used outside this section. Lemma 3.1 is only used to prove Lemma
3.2.

We start with the following helpful fact.

Lemma 3.3. Let (ai)i∈I be a sequence, indexed by some finite or countable sequence I, such that 0 ≤ ai ≤ 1
for all i, and

∑
i∈I ai < ∞. Let (ηi)i∈I be a collection of independent random variables, also indexed by I,

such that each ηi is Bernoulli(ai). Then

P
(∑

i∈I ηi is even
)

=
1

2

(
1 +

∏
i∈I

(1− 2ai)

)
. (3.4)

Proof. Since the ai’s have a finite sum, by Borel-Cantelli,
∑
i∈I ηi is almost surely finite. By independence,

E

[
(−1)

∑
i∈I ηi

]
=
∏
i∈I

E [(−1)ηi ] .

Simplifying,

2P
(∑

i∈I ηi is even
)
− 1 =

∏
i∈I

(1− 2ai).

Solving for P
(∑

i∈I ηi is even
)
, we obtain (3.4).

Recall that our plan for the proof of Lemma 3.1 is to construct a joint process (Yt, Zt)t≥0, with the same
law as (Xt, ϕ(Xt))t≥0, where Z is constructed first, and then Y is determined from Z and another random
structure independent of Z. The following definition and remark help us with the construction of (Yt, Zt)t≥0.
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Definition 3.4. Let us say that a flip of X occurs at time t if Xt− ∈ V and Xt ∈W , or vice versa.

Remark 3.5. (a) The jump kernel of the process ϕ(X) = (ϕ(Xt))t≥0 is

Jϕ(X)(x, y) = J(x, y) + J(x, y′) for all x, y ∈ V , x 6= y.

To see this, note that jumps in ϕ(X) from x to y occur precisely whenever X takes a jump from either x or
x′ to either y or y′. Jumps from x to y (or x′ to y′) occur with rate J(x, y), and jumps from x to y′ (or x′

to y) occur with rate J(x, y′).
(b) Suppose ϕ(X) takes a jump from x to y at time t. Then X must take a jump from either x or x′

to either y or y′. The probability that this jump is a flip in X is equal to J(x, y′)/(J(x, y) + J(x, y′)). This
quantity will come up in the proof of Lemma 3.1, so let us simplify notation by setting

pFlip(x, y) :=
J(x, y′)

J(x, y) + J(x, y′)
for all x, y ∈ V , x 6= y. (3.5)

Note that for any x, y ∈ V , the distance between x and y′ is greater than or equal to the distance between
x and y′. Since j is decreasing, this means that

J(x, y′) = j(|x− y′|) ≤ j(|x− y|) = J(x, y),

so

pFlip(x, y) ≤ 1

2
for all x, y ∈ V , x 6= y. (3.6)

Proof of Lemma 3.1. Let Z = (Zt)t≥0 be a stochastic process on V with the same law as ϕ(X) = (ϕ(Xt))t≥0.
Let (Ht)t≥0 be the minimal complete, right-continuous filtration such that Z is adapted to (Ht).

Let (Ut)t∈(0,∞) be an independent, identically-distributed collection of random variables, uniform on
(0, 1), indexed by [0,∞), such that the whole collection (Ut) is independent from Z.

In order to determine Y from Z, we must determine which jumps in Z are flips in Y . Whenever Z takes
a jump from x to y, the probability of a flip should be equal to pFlip(x, y) (as defined in (3.5)). Therefore,
let

F = {t > 0 : Zt− 6= Zt, Ut ≤ pFlip(Zt−, Zt)} .

The random set F will be the set of times at which a flip in Y occurs.
There may also be times t such that Zt ∈ H. In such cases, we must also determine which side of H the

process Y goes into after time t. In every such a case, we should choose either V or W , each with probability
1/2. This is achieved in the following construction.

Fix t ≥ 0. Suppose first that there does not exist any s ∈ [0, t] such that Zs ∈ H. In this case, let

Yt :=

Zt : if #(F ∩ (0, t]) is even

Z ′t : if #(F ∩ (0, t]) is odd.

Otherwise, let s be the maximal time less than or equal to t such that Zs ∈ H or Zs− ∈ H, and let

Yt :=

Zt : if Us ≤ 1
2 and #(F ∩ (s, t]) is even, or if Us >

1
2 and #(F ∩ (s, t]) is odd

Z ′t : if Us ≤ 1
2 and #(F ∩ (s, t]) is odd, or if Us >

1
2 and #(F ∩ (s, t]) is even.

Then (Yt, Zt)t≥0 has the same law as (Xt, ϕ(Xt))t≥0.
Recall that we defined (Gt)t≥0 to be the minimal complete, right-continuous filtration such that ϕ(X) is

adapted to (Gt). By analogy, let (Ht)t≥0 be the minimal complete, right-continuous filtration such that Z is
adapted to (Ht).

Fix t ≥ 0. Let us condition on the history of Z from time 0 to time t. If for any time s in this period, we
have Zs ∈ H or Zs− ∈ H, then the conditional probability that Yt ∈ V is at least 1/2, by symmetry. (We
say “at least 1/2” rather than “exactly 1/2” because the boundary H belongs to V ). If there is no such s,
then Yt ∈ V as long as the number of flips before time t is even. The potential flips occur independently,
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each with its own probability that does not exceed 1/2, so by Lemma 3.3, the conditional probability that
the number of flips is even is at least 1/2. Therefore, for all v ∈ V ,

Pv

(
Yt

∣∣∣Ht) ≥ 1

2
. (3.7)

Since (Yt, Zt)t≥0 has the same law as (Xt, ϕ(Xt))t≥0,

Pv

(
Xt

∣∣∣Gt) = Pv

(
Yt

∣∣∣Ht) ≥ 1

2
.

Let E be a pre-compact subset of V , which is open in the relative topology on V . Let τ
ϕ(X)
E := inf{t :

ϕ(Xt) /∈ E} and τZE := inf{t : Zt /∈ E}. Since E is open, τZE is a (Ht)-stopping time. For all v ∈ V , by the
same argument that we used to obtain (3.7), applied to τZE instead of t, we obtain

Pv

(
YτZE

∣∣∣HτZE ) ≥ 1

2
.

Since (Yt, Zt)t≥0 has the same law as (Xt, ϕ(Xt))t≥0,

Pv

(
X
τ
ϕ(X)
E

∣∣∣Gτϕ(X)
E

)
= Pv

(
YτZE

∣∣∣HτZE ) ≥ 1

2
.

Proof of Lemma 3.2. Let D and g satisfy (3.2) and (3.3). Let G : D → [0,∞) be the function

G(x) := Ex

[∫ τD

0

g(Xt) dt

]
for all x ∈ D.

Fix w ∈ D∩W . We would like to show that G(w) ≤ G(w′). Let Y = (Yt)t≥0 be a process with the same
law as X, starting at Y0 = w. We will also consider the process Y ′ = (Y ′t )t≥0, where Y ′t is the reflection of
Yt across H. This reflected process also has the same law as X, but its initial value is Y ′0 = w′ ∈ V .

Let Zt := ϕ(Yt) = ϕ(Y ′t ) for all t. Let (Gt)t≥0 be the minimal complete, right-continuous filtration such
that Z = (Zt)t≥0 is adapted to (Gt).

Note that for all t, either Yt ∈ V or Y ′t ∈ V .
Let

τYD := inf{t ≥ 0 : Yt /∈ D},

τY
′

D := inf{t ≥ 0 : Y ′t /∈ D},

T := min{τYD , τY
′

D },

T̃ := max{τYD , τY
′

D }.

Let
D0 := (D ∩W ) ∪ {w′ : w ∈ D ∩W}.

In other words, D0 is the largest subset of D that is symmetric about H. Let

D̃ := D \D0 = {x ∈ D : x′ /∈ D}.

Note that D̃ ⊆ D ∩ V .
Observe that T = inf{t : Yt /∈ D or Y ′t /∈ D} = inf{t : Zt /∈ D0 ∩ V }. Since D0 ∩ V is a pre-compact

subset of V , and is open in the relative topology on V , by Lemma 3.1, we have

P (YT ∈ V |GT ) ≥ 1

2
. (3.8)
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In order to show that G(w) ≤ G(w′), we will consider the quantity G(w′) − G(w), and show that it is
non-negative. Since Y and Y ′ have the same law as X and initial values w and w′ (respectively),

G(w′)−G(w) = Ew′

[∫ τD

0

g(Xt) dt

]
− Ew

[∫ τD

0

g(Xt) dt

]
= E

[∫ τY
′

D

0

g(Y ′t ) dt

]
− Ew

[∫ τYD

0

g(Yt) dt

]
.

This is equivalent to

G(w′)−G(w) = E

[∫ T

0

[g(Y ′t )− g(Yt)] dt+ 1{τY ′D >τYD}

∫ T̃

T

g(Y ′t ) dt+ 1{τYD>τY ′D }

∫ T̃

T

g(Yt) dt

]
.

Let us separate the right-hand side into two terms, which we will handle separately:

G(w′)−G(w) = A + B,

where

A := E

[∫ T

0

[g(Y ′t )− g(Yt)] dt

]
and

B := E

[
1{τY ′D >τYD}

∫ T̃

T

g(Y ′t ) dt+ 1{τYD>τY ′D }

∫ T̃

T

g(Yt) dt

]
.

We will show that both A and B are non-negative. Let us start with A . By Tonelli’s theorem,

A =

∫ ∞
0

E
[
1{T>t} [g(Y ′t )− g(Yt)]

]
dt.

By the Tower property, this becomes

A =

∫ ∞
0

E

[
E

[
1{T>t} [g(Y ′t )− g(Yt)]

∣∣∣Gt] ] dt
=

∫ ∞
0

E

[
E

[
1{T>t}

[
1{Y ′t∈V } − 1

{
Y ′t /∈V

}] [g(Zt)− g(Z ′t)]
∣∣∣Gt] ] dt. (3.9)

By taking all of the Gt-measurable random variables outside of the conditional expectation, (3.9) becomes

A =

∫ ∞
0

E

[
1{T>t} [g(Zt)− g(Z ′t)]E

[
1{Y ′t∈V } − 1

{
Y ′t /∈V

}∣∣∣∣Gt]
]
dt

=

∫ ∞
0

E

[
1{T>t} [g(Zt)− g(Z ′t)]

(
2P
[
Y ′t ∈ V

∣∣∣Gt]− 1
) ]

dt. (3.10)

Recall that g has the property that g(v) ≤ g(v′) for all v ∈ D ∩ V . Therefore, 1{T>t} [g(Zt)− g(Z ′t)] is
non-negative. Also, by Lemma 3.1,

2P
[
Y ′t ∈ V

∣∣∣Gt]− 1 ≥ 0.

Therefore, the integrand of (3.10) is non-negative. Thus, A ≥ 0.
Now let us show that B ≥ 0. Note that if T̃ > T , then ZT must be in D̃. Recall that ZT is equal to Y ′T

if τY
′

D > τYD , or YT if τYD > τY
′

D . Therefore, by the Markov property,

B = E

[
1{τY ′D >τYD}G(Y ′T ) + 1{τYD>τY ′D }G(YT )

]
= E

[
1{Y ′T∈V }G(ZT ) + 1{

Y ′T /∈V
}G(ZT )

]
= E

[(
1{Y ′T∈V } − 1{Y ′T∈V }

)
G(ZT )

]
.
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By the Tower property, this becomes,

B = E

[
G(ZT )E

[
1{Y ′T∈V } − 1{Y ′T∈V }

∣∣∣Gt]]
= E

[
G(ZT )

(
2P
[
Y ′T ∈ V

∣∣∣Gt]− 1
)]
.

By (3.8), 2P
[
Y ′T ∈ V

∣∣∣Gt]− 1 ≥ 0. Since G only takes non-negative values, G(ZT ) ≥ 0. Thus, B ≥ 0.

Since G(w′)−G(w) = A + B, and both A and B are non-negative, we have G(w) ≤ G(w′), just as we
wanted to prove.

4 Proof of Proposition 1.2

In this section, we prove Proposition 1.2. Fix constants c, α, and R such that 0 <
√

29α ≤ c < 1 and
R > 0. For the rest of this section, let A, U , f , and x0 all be precisely as they are defined in the statement
of Proposition 1.2.

Recall the notation B(d−1)(x0, r) from (1.1). Within A, consider the smaller cylinders

A+ :=
(

(1− 2α)R,R
)
×B(d−1)(0, αR) and A− :=

(
−R,−(1− 2α)R

)
×B(d−1)(0, αR).

Also, let U be the smaller cylinder within U defined by

U :=
(

(1 + α)R, (3 + α)R
)
×B(d−1)(0, αR).

Finally, let
A` := {x ∈ A : 〈x, e1〉 ≤ 0 and x /∈ A−} .

and
Ar := {x ∈ A : 〈x, e1〉 > 0} .

See Figure 4.1 for a sketch of all these regions.
We must prove that (1.6) holds. This entails putting an upper bound on the quantity f(−x0) =

P−x0(XτA ∈ U).
Given a measurable set E ⊆ A \A−, it will help to consider the quantities

G(E) := P−x0

(
XτA−

∈ E
)
,

H(E) := max
y∈E

f(y) = max
y∈E

Py (XτA ∈ U) .

The quantities G(E) and H(E) will be useful to us because they give an upper bound on the probability,
given X0 = −x0, that the first point X reaches outside of A− is in E, and the first point X reaches outside
of A is in U . Indeed, for all measurable E ⊆ A \A−, by the Strong Markov property,

P−x0

(
XτA−

∈ E,XτA ∈ U
)

= E−x0

[
1{

XτA−
∈E

}PXτA− (XτA ∈ U)

]
= E−x0

[
1{

XτA−
∈E

}f (XτA−

)]
≤ E−x0

[
1{

XτA−
∈E

}] ·max
y∈E

f(y)

= P−x0

(
XτA−

∈ E
)
·H(E)

= G(E)H(E). (4.1)

Note that {A−,A`,Ar} is a partition of A. Suppose X0 = −x0, and consider the following three disjoint
ways for XτA to be in U :
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Figure 4.1: Sketch of the setting of Proposition 1.2, including some additional named regions that will
help with the proof.

0

0
−x0

−x0
x0

x0

A− A+ U

A` Ar

A U

� The first point X reaches outside of A− is already in U .

� The first point X reaches outside of A− is in A`. Later, the first point that X reaches outside of A is
in U .

� The first point X reaches outside of A− is in Ar. Later, the first point that X reaches outside of U is
in U .

Using this decomposition, we break up f(−x0) (the quantity we seek to put an upper bound on) into three
additive terms:

f(−x0) = P−x0
(XτA ∈ U)

= P−x0

(
XτA−

∈ U
)

+ P−x0

(
XτA−

∈ A`, XτA ∈ U
)

+ P−x0

(
XτA−

∈ Ar, XτA ∈ U
)
.

By (4.1), this becomes

f(−x0) ≤ P−x0

(
XτA−

∈ U
)

+G(A`)H(A`) +G(Ar)H(Ar). (4.2)

We will handle each term from (4.2) separately. First, we use (2.1) (the equation we derived from

the Lévy system formula) to put an upper bound on P−x0

(
XτA−

∈ U
)

. Then we apply Lemma 2.2 in

two different ways to derive upper bounds on G(A`) and H(Ar). We use a short argument involving the
translation-invariance of the process to put an upper bound on G(Ar). Finally, we use Lemma 3.2 (one of
the “Preferred side” lemmas from Section 3) to put an upper bound on H(A`).

4.1 Using the Lévy system formula to obtain an upper bound on P−x0(XτA−
∈ U)

Let us first handle the term P−x0

(
XτA−

∈ U
)

. We will compare it to Px0
(XτA ∈ U), using the Lévy system

formula.

Lemma 4.1. If α, c, A, U , f , and x0 are as in Proposition 1.2, then

P−x0 (XτA ∈ U) ≤ α−d j(R)

j(cR)
f(x0). (4.3)
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Proof. The first coordinate of each point in A− is at most (−1 + 2α)R, and the first coordinate of any point
in U is at least (1 + α)R. Therefore, for all y ∈ A− and z ∈ U , |z − y|≥ (2 − α)R ≥ R, so J(y, z) ≤ j(R).
Since this holds for all z ∈ U ,

J(y,U) ≤ |U| j(R) for all y ∈ A−. (4.4)

Similarly, for all y ∈ A+ and z ∈ U , |z − y|<
√

52 + 22αR =
√

29αR ≤ cR, so J(y, z) ≥ j(cR). Since this
holds for all z ∈ U ,

J(y,U) ≥ J(y, U) ≥ |U | j(cR) = αd|U| j(cR) for all y ∈ A+. (4.5)

By (2.1) and (4.4),

P−x0

(
XτA−

∈ U
)

= E−x0

[∫ τA−

0

J(Xs,U) ds

]
(by (2.1))

≤ E−x0

[∫ τA−

0

ds

]
· |U| j(R) (by (4.4))

= E−x0

[
τA−

]
|U| j(R). (4.6)

Applying (2.1) and (4.5) similarly gives

Px0
(XτA) ≥ Ex0

[
τA+

]
αd|U| j(cR). (4.7)

By (4.6) and (4.7),

P−x0

(
XτA−

∈ U
)

Px0

(
XτA+

∈ U
) ≤ E−x0

[
τA−

]
Ex0

[
τA+

] |U|
αd|U|

j(R)

j(cR)
. (4.8)

Since X is translation-invariant, E−x0

[
τA−

]
= Ex0

[
τA+

]
. Also, since A+ ⊆ A, we have Px0

(XτA+
∈ U) ≤

Px0
(XτA ∈ U) = f(x0). Therefore, (4.8) implies (4.3).

4.2 Upper bounds on G(A`), H(Ar), and G(Ar)
Next, let us use Lemma 2.2 to put upper bounds on both G(A`) and H(Ar).
Lemma 4.2. Both G(A`) and H(Ar) are less than or equal to P0

(
XτB(0,αR)

∈ B(0, 10R)
)
.

Proof. By applying Lemma 2.2 with x = −x0, E1 = A−, E2 = A`, r1 = αR, and r2 = 10R,

G(A`) = P−x0

(
XτA−

∈ A`
)
≤ P0

(
XτB(0,αR)

∈ B(0, 10R)
)
.

For all x ∈ A, by applying Lemma 2.2 with E1 = A, E2 = U , r1 = αR, and r2 = 10R, we have

f(x) = Px(XτA ∈ U) ≤ P0

(
XτB(0,αR)

∈ B(0, 10R)
)

for all x ∈ A.
This means that

H(E) = max
y∈E

f(y) ≤ P0

(
XτB(0,αR)

∈ B(0, 10R)
)

for all measurable E ⊆ A \A−. (4.9)

In particular, by applying (4.9) to E = Ar,
H(Ar) ≤ P0

(
XτB(0,αR)

∈ B(0, 10R)
)
.

To put an upper bound on G(Ar), we simply use the translation-invariance of the process X.

Lemma 4.3. G(Ar) ≤ f(x0).

Proof. Suppose two different versions of X, one starting at −x0 and the other starting at x0, have identical
increments. In order to have XτA−

∈ U for the first process, we must have XτA+
∈ U for the second process,

as demonstrated Figure 4.2.
Therefore,

G(Ar) = P−x0

(
XτA−

∈ Ar
)
≤ Px0

(
XτA+

∈ U
)
≤ f(x0).
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Figure 4.2: A visual aide for the proof of Lemma 4.3. Given two different versions of the process X,
with initial points −x0 and x0 (respectively) and identical increments, if XτA−

∈ Ar for the first process,

then XτA ∈ (Ar + 2x0) ⊆ U for the second process.

00A− A+

Ar Ar + 2x0

A U

4.3 Using the “Preferred side” lemmas to obtain an upper bound on H(A`)
All that remains is to show that H(A`) = maxy∈A` Py (XτA ∈ U) is bounded above by f(x) for some
x ∈ B(0, (1 − α/2)R). Intuitively, one would think that f(x) should be increasing as x gets closer to U ,
and therefore, H(A`) should easily be less than f(x0), as x0 is much closer to U than any point in A`.
Unfortunately, it proved surprisingly hard to come up with a proof that encapsulated this idea. We were
however able to find a proof that f(y) ≤ f(0) for all y ∈ A`. This proof depends on the following lemma,
and Lemma 3.2 (the technical “Preferred side” lemma proved in Section 3).

Lemma 4.4. Suppose y = (y1, ỹ) and z = (y1, z̃) are two points in A that share the same first coordinate,
with y1 ∈ (−R,R) and ỹ, z̃ ∈ B(d−1)(0, R), and suppose that |ỹ|≤ |z̃|. Then J(y,U) ≥ J(z,U).

Proof. By the symmetry in the geometry of A and U , we can assume without loss of generality that y and
z are of the form

y = (y1, y2, 0, . . . , 0), z = (y1, z2, 0, . . . , 0)

where z2 ≥ y2 ≥ 0. (The values of J(y,U) and J(z,U) do not change if we replace y with (y1, |ỹ|, 0, . . . , 0),
and z with (y1, |z̃|, 0, . . . , 0).)

Recall that U = ((1 + α)R, (3 + α)R)×B(d−1)(0, R). Let

Û := ((1 + α)R, (3 + α)R)×B(d−1) ((0, z2 − y2, 0, . . . , 0), R) .

Note that Û = U + (z − y); in other words, Û is the result of shifting U by z − y. By translation-invariance,

J(y,U) = J(z, Û). (4.10)

Thus,

J(y,U)− J(z,U) = J(z, Û)− J(z,U) (by (4.10))

=
(
J(z,U ∩ Û) + J(z, Û \ U)

)
−
(
J(z,U ∩ Û) + J(z,U \ Û)

)
= J(z, Û \ U)− J(z,U \ Û)

=

∫
Û\U

J(z, u) du−
∫
U\Û

J(z, u). (4.11)

Let us consider the following bijection f : U \ Û → Û \ U , defined by

f(u1, u2, u3, . . . , ud) := (u1, z2 − y2 − u2, u3, . . . , ud).
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This is clearly a bijection, as its inverse is given by the same formula. It also preserves measure. Therefore,
(4.11) can be re-written as

J(y,U)− J(z,U) =

∫
U\Û

(J(z, f(u))− J(z, u)) du. (4.12)

We will show that J(z, f(u)) ≥ J(z, u) for all u ∈ U \ Û . This will allow us to prove that the quantity in

(4.12) is non-negative. Fix u = (u1, u2, u3, . . . , ud) ∈ U \ Û . By the definitions of U and Û ,√
u21 + u22 + u23 + · · ·+ u2d < R and

√
u21 + (z2 − y2 − u2)2 + u23 + · · ·+ u2d ≥ R.

Thus,
|u2|< |u2 − (z2 − y2)|. (4.13)

It is a fact that for any a > 0, the set {x : |x|< |x − a|} is equal to {x : x ≤ a
2}. (To see this, graph the

functions |x| and |x− a|.) Therefore, (4.13) is equivalent to

u2 <
1

2
(z2 − y2). (4.14)

It follows from (4.14) that

z2 − u2 >
1

2
(z2 + y2)

and

y2 + u2 <
1

2
(z2 + y2).

Thus,
z2 − u2 > y2 + u2. (4.15)

Recall that z2 ≥ 0 ≥ −y2. Thus,
z2 − u2 ≥ −y2 − u2. (4.16)

By (4.15) and (4.16),
z2 − u2 ≥ |y2 + u2|. (4.17)

Therefore,

J(z, f(u)) = J
(

(y1, z2, 0, . . . , 0), (u1, z2 − y2 − u2, u3, . . . , ud)
)

= j

(√
(y1 − u1)2 + (y2 + u2)2 + u23 + · · ·+ u2d

)
≤ j

(√
(y1 − u1)2 + (z2 − u2)2 + u23 + · · ·+ u2d

)
(by (4.17))

= J
(

(y1, z2, 0, . . . , 0), (u1, u2, u3, . . . , ud)
)

= J(z, u). (4.18)

By (4.12) and (4.18),
J(y,U)− J(z,U) ≤ 0.

Lemma 4.5. H(A`) ≤ f(0).
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Figure 4.3: Proof of Lemma 4.5

A U
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Proof. We would like to show that supy∈A` f(y) ≤ f(0). Fix y ∈ A`.
By the symmetry in the geometry of A and U , we can us assume without loss of generality that y =

(y1, y2, 0, . . . , 0) for some y2 ≥ 0. (The value of f(y) does not change if y = (y1, y2, y3, . . . , yd) is replaced
with (y1,

√
y22 + y23 + · · · y2d, 0, . . . , 0).)

Let z = (0, y2, 0, . . . , 0). Let H1 be the hyperplane consisting of all points that are at an equal distance
from y and z. Let H2 be the hyperplane consisting of all points that are at an equal distance from z and 0.

In order to follow this proof, we recommend the reader look at Figure 4.3.
We will first apply Lemma 3.2 to H = H1, D = A, and g(x) = J(x,U), where V = V1 (the preferred

side) is the side of H1 containing z, and W = W1 is the side containing y. We must verify (3.2) and (3.3).
Let us start with (3.2). Fix w ∈ A ∩W1. We must show that w′ (the reflection of w across H1) is also

in A. We can write w as w = (w1, w̃) for some w1 ∈ (−R, y1/2] and w̃ ∈ B(d−1)(0, R). This means that
w′ = (y1 − w1, w̃). Recall that −R < w1 ≤ y1/2 ≤ 0, so

y1 − w1 ≥ y1 > −R

and
y1 − w1 ≤ 0− (−R) = R.

Since −R < y1 − w1 < R and w̃ ∈ B(d−1)(0, R), we have w′ = (y1 − w1, w̃) ∈ (−R,R) × B(d−1)(0, R) = A,
as desired.

Now let us check (3.3). Given w ∈ A ∩W1 and w′ ∈ A ∩ V1, every x ∈ U is closer to w′ than w. Since
j(r) is non-increasing, this means that g(w) = J(w,U) ≤ J(w′,U) = g(w′).

Now that we have verified its conditions, Lemma 3.2 tells us that

f(y) ≤ f(z). (4.19)

Next, we will make a similar use of Lemma 3.2 in order to show that f(z) ≤ f(0). Let H = H2, D = A,
and g(x) = J(x,U). Let V = V2 (the preferred side) be the side of H2 containing 0, and let W = W2 be the
side containing z. We must again verify (3.2) and (3.3).

Recall that y = (y1, y2, 0, . . . , 0) and z = (0, y2, 0, . . . , 0). Then H2 (the hyperplane of points equidistant
from 0 and z) is equal to the set of (x1, x2, . . . , xd) such that x2 = y2/2. Furthermore, V2 is the set of
(x1, x2, . . . , xd) such that x2 ≥ y2/2 and W2 is the set of (x1, x2, . . . , xd) such that x2 < y2/2.

Fix w = (w1, w2, w3, . . . , wd) ∈ A ∩ W2. Since H = H2 is the hyperplane of points whose second
coordinate is y2/2, the reflection of w across H2 is w′ = (w1, y2 − w2, w3, . . . , wd). In order to verify (3.2)
and (3.3), we must check that w′ ∈ A and J(w,U) ≤ J(w′,U).
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We clearly have w1 ∈ (−R,R), since w ∈ A. Since y2 ≥ 0 and w ∈W2, we also have

(y2 − w2)2 = y22 − 2y2w2 + w2
2

= y2(y2 − 2w2) + w2
2

≤ w2
2 (since y2 ≥ 0 and w2 ≤ y2/2).

Thus,
|(y2 − w2, w3, . . . , wd)|≤ |(w2, w3, . . . , wd)|< R.

Since w1 ∈ (−R,R) and |(y2 − w2, w3, . . . , wd)|< R, we have

w′ = (w1, w2, w3, . . . , wd) ∈ (−R,R)×B(d−1)(0, R) = A

so (3.2) is confirmed.
Since |(y2 − w2, w3, . . . , wd)|≤ |(w2, w3, . . . , wd)|, Lemma 4.4 tells us that J(w′,U) ≥ J(w,U), so (3.3) is

confirmed.
By Lemma 3.2,

f(z) ≤ f(0). (4.20)

By (4.19) and (4.20), f(y) ≤ f(0).

We have now proven upper bounds for all of the necessary terms, and are ready to complete the proof of
Proposition 1.2.

Proof of Proposition 1.2. Recall that x0 and 0 belong to B(0, (1 − α/2)R). If we start with (4.2) and then

replace each of the terms P−x0

(
XτA−

∈ U
)

, G(A`), H(A`), G(Ar), and H(Ar) with its respective upper

bound from Lemmas 4.1-4.3 and 4.5, we obtain

f(−x0) ≤α−d j(R)

j(cR)
f(x0)

+ P0

(
XτB(0,αR)

∈ B(0, 10R)
)
· f(0)

+ f(x0) · P0

(
XτB(0,αR)

∈ B(0, 10R)
)

≤
(
α−d

j(R)

j(cR)
+ 2P0

(
XτB(0,αR)

∈ B(0, 10R)
))

sup
B(0,(1−α/2)R)

f.

5 Specific counterexamples

In this section, we construct specific subordinated Brownian motions that satisfy the conditions of Theorem
1.1, and therefore do not satisfy EHI.

First, let us distinguish between EHI at large scales and EHI at small scales. We say that X satisfies the
large-scale elliptic Harnack inequality (LargeEHI) if there exist C1, C2 > 0 and κ ∈ (0, 1) such that for all
x0 ∈ Rd and r ≥ C1, if h is a non-negative function that is harmonic on B(x0, r), then

h(x) ≤ C2h(y) for all x, y ∈ B(x0, κr). (5.1)

We say that X satisfies the small-scale elliptic Harnack inequality (SmallEHI) if there exist C1, C2 > 0 and
κ ∈ (0, 1) such that for all x0 ∈ R

d and r ∈ (0, C1], if h is a non-negative function that is harmonic on
B(x0, r), then

h(x) ≤ C2h(y) for all x, y ∈ B(x0, κr). (5.2)

Note that like EHI, both LargeEHI and SmallEHI do not depend on the specific value of κ.
Clearly, both LargeEHI and SmallEHI are necessary for EHI to hold. We construct SBMs for which

LargeEHI fails, and SBMs for which SmallEHI fails.
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5.1 A general recipe for counterexamples to EHI

The following theorem gives us a general recipe for producing SBMs which fail to satisfy EHI. We will use
this recipe to generate two concrete examples, Example 5.3 (which fails to satisfy LargeEHI) and Example
5.5 (which fails to satisfy SmallEHI).

Before we state the theorem, let us introduce the following notation: we say an � bn (or equivalently,
bn � an) whenever (an) and (bn) are sequences of positive numbers such that an = o(bn).

Theorem 5.1. Let X = (Xt) = (W (St)) be a subordinated Brownian motion on R
d, let µ be the Lévy

measure of the subordinator S, and let γ be the drift of S. Suppose (an), (bn), and (cn) are sequences such
that 0 < an ≤ bn ≤ cn. For all n, let

Rn :=

√
an

(
d log

(
cn
bn

)
+ 2 log

(
µ([an, bn])

µ((bn,∞))

))
(5.3)

and

θn :=
γ +

∫
(0,bn]

s µ(ds)

µ((bn,∞))
. (5.4)

If we have both
cn � R2

n � max{bn, θn} (5.5)

and ∫
(bn,∞)

s−d/2 µ(ds)

µ((bn,∞))
≤ c−d/2n , (5.6)

then X satisfies the conditions of Theorem 1.1, and therefore X does not satisfy EHI.

Proof. By (5.5), R2
n � bn. Let f be the function f(n) := R2

n/bn →∞.
For all n, recall from (1.4) that

j(Rn) =

∫
(0,∞)

(2πs)−d/2 exp

(
−R

2
n

2s

)
µ(ds),

j(Rn/2) =

∫
(0,∞)

(2πs)−d/2 exp

(
−R

2
n

8s

)
µ(ds).

We will use the fact that R2
n � bn to show that [an, bn] contributes more to these integrals than (bn,∞),

and that
[
(2πs)−d/2 exp

(
−R

2
n

8s

)]
/
[
(2πs)−d/2 exp

(
−R

2
n

2s

)]
is large for all s ∈ [an, bn], so the ratio between

j(Rn/2) and j(Rn) is very large.
Note that θn is the expected value of St at the instant before the first time S takes a jump of size

larger than bn. We will show that with high probability, |Xt| is at most on the order of
√
θn before the

first such jump, and of an order much larger than Rn immediately after. Since R2
n � θn, this means that

P0

(
XτB(0,Rn/20)

∈ B(0, 10Rn)
)

will be small.
Note that our choice of the quantity Rn is the result of reverse-engineering so that both of these arguments

work.
By (5.3) and some elementary algebraic manipulations,

µ([an, bn]) · b−d/2n · exp

(
− R

2
n

2an

)
= µ((bn,∞))c−d/2n . (5.7)

Note that for all s ∈ [an, bn], we have s−d/2 ≥ b−d/2n and exp
(
−R

2
n

2s

)
≥ exp

(
− R2

n

2an

)
. Thus,

∫
[an,bn]

s−d/2 exp

(
−R

2
n

2s

)
µ(ds) ≥ µ([an, bn]) · b−d/2n · exp

(
− R

2
n

2an

)
. (5.8)
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Combining the above estimates, we obtain∫
[an,bn]

s−d/2 exp

(
−R

2
n

2s

)
µ(ds) ≥ µ([an, bn]) · b−d/2n · exp

(
− R

2
n

2an

)
(by (5.8))

= µ((bn,∞))c−d/2n (by (5.7))

≥
∫
(bn,∞)

s−d/2 µ(ds) (by (5.6))

≥
∫
(bn,∞)

s−d/2 exp

(
−R

2
n

2s

)
µ(ds).

(5.9)

For all s ≤ bn,

exp
(
−R

2
n

8s

)
exp
(
−R

2
n

2s

) = exp

(
3

8
· R

2
n

s

)
≥ exp

(
3

8
· R

2
n

bn

)
= e

3
8 f(n). (5.10)

Thus,

j(Rn/2) =

∫
(0,∞)

(2πs)−d/2 exp

(
−R

2
n

8s

)
µ(ds)

≥
∫
(0,bn]

(2πs)−d/2 exp

(
−R

2
n

8s

)
µ(ds)

≥ e 3
8 f(n)

∫
(0,bn]

(2πs)−d/2 exp

(
−R

2
n

2s

)
µ(ds) (by (5.10))

≥ 1

2
e

3
8 f(n)

∫
(0,∞)

(2πs)−d/2 exp

(
−R

2
n

2s

)
µ(ds) (by (5.9))

=
1

2
e

3
8 f(n)j(Rn).

In other words,
j(Rn)

j(Rn/2)
≤ 2e−

3
8 f(n) → 0. (5.11)

For all n, let S̃(n) =
(
S̃
(n)
t

)
t≥0

be the process

S̃
(n)
t := St −

∑
0<u≤t:S(u)−S(u−)>bn

[S(u)− S(u−)] .

(In other words, S̃(n) behaves just like S, but without any jumps of size larger than bn.) Then S̃(n) is a Lévy
process, with the same drift γ as S, and with Lévy measure

µ̃(n)(E) = µ(E ∩ (0, bn]) for all measurable E ⊆ (0,∞).

It follows from the probabilistic interpretation of drift and Lévy measure that for all t > 0,

E

[
S̃
(n)
t

]
=

(
γ +

∫
(0,bn]

s µ(ds)

)
t.

Let Tn := inf{t : S(t) − S(t−) > bn}. Then Tn is exponentially-distributed with rate µ((bn,∞)) (and
therefore, with mean 1/µ((bn,∞))). Since Tn and S̃(n) are independent,

E

[
S̃
(n)
Tn

]
=

(
γ +

∫
(0,bn]

s µ(ds)

)
· E[Tn] =

γ +
∫
(0,bn]

s µ(ds)

µ((bn,∞))
= θn (5.12)
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(where θn is as defined in (5.4)).
Recall from (5.5) that cn � R2

n � θn. Choose some sequences (Qn) and (qn) such that cn � Qn �
R2
n � qn � θn. (For example, let Qn =

√
cnR2

n and qn =
√
R2
nθn.) We will show that with high

probability, S(Tn−) < qn and S(Tn) > Qn. This means that with high probability, |Xt|= |W (St)| is
of a smaller order than Rn for all t < Tn, and then |X(Tn)| is of a larger order than Rn. Therefore,
P0

(
XτB(0,Rn/20)

∈ B(0, 10Rn)
)
→ 0.

By (5.12) and Markov’s inequality,

P (S(Tn−) ≥ qn) = P

(
S̃(n)(Tn) ≥ qn

)
≤ θn
qn
→ 0.

Let ∆S(Tn) := S(Tn)− S(Tn−). By the probabilistic interpretation of µ,

P (|∆S(Tn)|≤ Qn) =
µ((bn, Qn])

µ((bn,∞))

=
µ((bn, Qn]) ·Q−d/2n

µ((bn,∞)) ·Q−d/2n

≤

∫
(bn,Qn]

s−d/2 µ(ds)

µ((bn,∞)) ·Q−d/2n

≤

∫
(bn,∞)

s−d/2 µ(ds)

µ((bn,∞)) ·Q−d/2n

≤ c
−d/2
n

Q
−d/2
n

(by (5.6))

= (cn/Qn)−d/2 → 0.

Thus, with high probability, S(Tn−) < qn and S(Tn) > Qn.
If X0 = 0, by the time/space scaling of the d-dimensional Brownian motion W , we also have

max
0≤s≤qn

|Ws|<
Rn
20

and |X(Tn)−X(Tn−)|= |W (S(Tn))−W (S(Tn−))|≥ 20Rn

with high probability.
Assuming all of these high probability events occur, for all t < Tn we have |Xt|= |W (St)|< Rn/20,

and at time Tn we have |X(Tn)|≥
(
20− 1

20

)
Rn > 10Rn. Therefore, τB(0,Rn/20) = Tn, and XτB(0,Rn/20)

/∈
B(0, 10Rn). This completes our proof that

P0

(
XτB(0,Rn/20)

∈ B(0, 10Rn)
)
→ 0. (5.13)

By (5.11) and (5.13), X satisfies the conditions of Theorem 1.1 for c = 1/2 and α = 1/20.

5.2 A counterexample in which EHI fails at large scales

Let us apply Theorem 5.1 to the specific case where µ (the Lévy measure of S) is a sum of Dirac measures.
Suppose (Hm)∞m=0 and (Am)∞m=0 are sequences of positive numbers, with

∑∞
m=0Hm < ∞ and Am ↗ ∞.

Let

µ =

∞∑
m=0

HmδAm

(where δx denotes the Dirac measure δx(E) = 1{x∈E})).
Since

∑∞
m=0Hm < ∞, we have

∫
(0,∞)

(1 ∧ x)µ(dx) ≤ µ((0,∞)) < ∞. Therefore, there exists a subordi-

nator S with Lévy measure µ.
By applying Theorem 5.1, with an = bn = An and cn = An+1, we obtain the following corollary.
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Corollary 5.2. Let µ be the measure

µ =

∞∑
m=0

HmδAm

where (Hm)∞m=0 and (Am)∞m=0 are sequences of positive numbers, such that
∑∞
m=0Hm <∞ and Am ↗∞.

Let S = (St) be a non-decreasing, right-continuous Lévy process on [0,∞) with Lévy measure µ and drift
γ ≥ 0. Let X = (Xt) = (W (St)) be a SBM with subordinator S.

For all n, let

Rn :=

√
An

(
d log

(
An+1

An

)
+ 2 log

(
Hn∑

m>nHm

))
(5.14)

and

θn :=
γ +

∑
m≤nHmAm∑
m>nHm

. (5.15)

If An+1 � R2
n � max{An, θn}, then X satisfies the conditions of Theorem 1.1, and therefore X does not

satisfy LargeEHI.

For a concrete example, consider the case when Hm = 2−m, Am = 2m
2

, and γ = 0.

Example 5.3. Let µ be the measure

µ =

∞∑
m=0

HmδAm

where Hm = 2−m and Am = 2m
2

.
Let S = (St) be a non-decreasing, right-continuous Lévy process on [0,∞) with Lévy measure µ and drift

0. Let X = (Xt) = (W (St)) be a SBM with subordinator S. Then X does not satisfy LargeEHI.

Proof. Let Rn and θn be as defined in (5.14) and (5.15). We must verify that An+1 � R2
n � max{An, θn}.

A simple calculation shows that

R2
n = 2n

2

· d

log2 e
· (2n+ 1),

so An+1 � R2
n � An. It remains to show that R2

n � θn.
The value of θn is

θn =

∑n
m=0 2−m2m

2

2−n
= 2n

n∑
m=0

2m
2−m

= 2n

(
2n

2−n +

n−1∑
m=0

2m(m−1)

)

= 2n
2

+ 2n
n−1∑
m=0

2m(m−1)

≤ 2n
2

+ 2n · n · 2(n−1)(n−2)

= 2n
2 (

1 + n · 2−2n+2
)
� R2

n.

The quantity R2
n is on the order of 2n

2

n, while θn is on the order of 2n
2

.

5.3 A counterexample in which EHI fails at small scales

Let us also apply Theorem 5.1 to the case where µ =
∑∞
m=0HmδAm , where Am ↘ 0. Let an = bn = An and

cn = An−1.
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Corollary 5.4. Let µ be the measure

µ =

∞∑
m=0

HmδAm

where (Hm)∞m=0 and (Am)∞m=0 are sequences of positive numbers, such that
∑∞
m=0HmAm <∞ and Am ↘ 0.

Let S = (St) be a non-decreasing, right-continuous Lévy process on [0,∞) with Lévy measure µ and drift
γ ≥ 0. Let X = (Xt) = (W (St)) be a SBM with subordinator S.

For all n, let

Rn :=

√
An

(
d log

(
An−1
An

)
+ 2 log

(
Hn∑

m<nAm

))
(5.16)

and

θn :=
γ +

∑
m≥nHmAm∑
m<nHm

. (5.17)

If An−1 � R2
n � max{An, θn}, then X satisfies the conditions of Theorem 1.1, and therefore X does not

satisfy SmallEHI.

This gives us an example of a SBM such that SmallEHI fails.

Example 5.5. Let µ be the measure

µ =

∞∑
m=0

HmδAm

where Hm = 1 and Am = 2−m
2

.
Let S = (St) be a non-decreasing, right-continuous Lévy process on [0,∞) with Lévy measure µ and drift

0. Let X = (Xt) = (W (St)) be a SBM with subordinator S. Then X does not satisfy SmallEHI.

Proof. The quantities from (5.16) and (5.17) are

R2
n = 2−n

2

(
d log

(
2−n

2+2n−1

2−n2

)
+ 2 log

(
1

n

))

= 2−n
2

(
d

log2(e)
· (2n− 1)− 2 log(n)

)
and

θn =

∑∞
m=n 2−m

2

n
. (5.18)

Since each term of the sum in (5.18) is less than half of the last term,

θn ≤ 2 · 2−n
2

n
.

We therefore have An−1 � R2
n � max{An, θn}. By Corollary 5.4, X does not satisfy SmallEHI.

5.4 A counterexample in which the subordinator has a continuous, decreasing
Lévy measure

In Examples 5.3 and 5.5, the Lévy measure µ of the subordinator S has large gaps: there are intervals (a, b),
with 0 < a� b, such that µ((a, b)) = 0, even though µ((0, a]) > 0 and µ([b,∞)) > 0.

A natural question to ask is: does there exist a subordinated Brownian motion (Xt) = (W (St)), which
does not satisfy EHI, such that the Lévy measure of S is absolutely continuous with respect to the Lebesgue
measure on (0,∞), and its density is decreasing?

In this subsection, we prove that the answer to this question is “yes.”
To motivate our argument, consider the following observation. In Examples 5.3 and 5.5, the subordinator

S only takes jumps of size Am (for some m). As a result, almost every jump that the process X takes is on
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the order of
√
Am for some m, and there are large gaps between each Am and Am+1. Despite this, the jump

kernel j(r) of X is still decreasing in r, since it is a sum of Gaussians.
In the next example, instead of S taking only jumps of size Am for some m, we will have S take jumps of

size AmY , where Y is a random variable sampled from the standard exponential distribution (P(Y > y) = e−y

for all y ≥ 0). This way, the Lévy measure of S is a sum of continuous, decreasing exponentials. Each time
such a jump in S occurs, the process X = (Xt) = (W (St)) takes a jump with displacement

√
AmY Z,

where Z is a standard d-dimensional Gaussian independent from Y . Therefore, almost every jump in X has
magnitude on the order of

√
Am, just like in Examples 5.3 and 5.5, and we can use an argument very similar

to the proof of Theorem 5.1 to show that X does not satisfy EHI.
For the rest of this subsection, let d = 1, and let X = (Xt) be SBM on R described as follows.

For all m ∈ Z+, let Hm = 2−m and Am = 2m
2

. For each m ∈ Z+, consider a Poisson process Nm =
(Nm

t )t≥0, with rate Hm. Suppose all of these Poisson processes are independent.
Let Y be a standard exponential random variable (so Y has density fY (y) = e−y on (0,∞), and P(Y >

y) = e−y for all y ≥ 0). Let (Ym,i)m∈Z+,i∈N be a collection of independent, identically-distributed copies of
Y , indexed by (m, i) ∈ Z+ × N.

Let S = (St)t≥0 be the non-negative Lévy process defined by

St :=

∞∑
m=0

Nmt∑
i=1

AmYm,i.

In other words, events in Nm occur with rate Hm, and each time such an event occurs, the process S takes
a jump of size Am times a standard exponential.

Then S is a non-decreasing, right-continuous Lévy process on [0,∞). For each m, if Y is a standard
exponential, then AmY has density A−1m e−x/Am . Therefore, the Lévy measure µ of S is given by

µ(dx) =

∞∑
m=0

Hm

Am
e−x/Am dx, x ∈ (0,∞). (5.19)

Let W = (Wt)t≥0 be a standard Brownian motion on R, independent of S, and let X = (Xt) := (W (St))
be a SBM with subordinator S.

We would now like to calculate the jump kernel of X. The following lemma tells us the value of an
integral that will come up in this calculation.

Lemma 5.6. For all r ≥ 0, ∫ ∞
0

exp

(
−
(
t2 +

r2

t2

))
dt =

√
π

2
e−2r.

Proof. Let F (r) be the value of the integral in question. It is well-known that F (0) =
√
π
2 , by the Gaussian

integral. We will show that F solves the differential equation F ′(r) = −2F (r).
By differentiating under the integral sign,

F ′(r) =

∫ ∞
0

exp

(
−
(
t2 +

r2

t2

))
· −2r

t2
dt. (5.20)

(This differentiation under the integral sign is justified by Tonelli’s theorem, since the difference quotient

1

h

[
exp
(
−
(
t2 + (r + h)2/t2

))
− exp

(
−
(
t2 + r2/t2

))]
is non-positive for all h > 0.)

Let us apply the change of variables s = r/t (so ds = −r/t2 dt). Then (5.20) becomes

F ′(r) = −
∫ ∞
0

exp

(
−
(
r2

s2
+ s2

))
· 2 ds

= −2F (r).

Thus, F solves the differential equation {F ′(r) = −2F (r);F (0) =
√
π/2}, the solution to which is F (r) =√

π
2 e
−2r.
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Lemma 5.7. The jump kernel of X is

j(r) =

∞∑
m=0

Hm

√
1

2Am
exp

(
−
√

2

Am
r

)
. (5.21)

Proof. Consider what happens at a time t when an event occurs in the Poisson process Nm. The subordinator

S takes a jump of size Am times a standard exponential: St−St−
d
= AmY . This means that X takes a jump

with displacement
√
AmY Z, where Y is a standard exponential, and Z is a standard Gaussian independent

from Y :

Xt −Xt− = W (St)−W (St−)

= W (St− +AmY )−W (St−)

=
√
AmY Z.

Let us calculate the density of
√
AmY Z at some x ∈ R. Consider a small ε > 0. By conditioning on Y , the

probability that
√
AmY Z is in the ball B(x, ε) is equal to

P

(√
AmY Z ∈ B(x, ε)

)
=

∫ ∞
0

e−y P
(√

AmyZ ∈ B(x, ε)
)
dy

=

∫ ∞
0

e−y P

(
Z ∈ B

(
x√
Amy

,
ε√
Amy

))
dy.

Thus, the density of
√
AmY Z at x is equal to

lim
ε→0

1

2ε
P

(√
AmY Z ∈ [x− ε, x+ ε]

)
= lim
ε→0

1

2ε

∫ ∞
0

e−y P

(
Z ∈

[
x− ε√
Amy

,
x+ ε√
Amy

])
dy

= lim
ε→0

1

2ε

∫ ∞
0

e−y
∫ (x+ε)/

√
Amy

(x−ε)/
√
Amy

1√
2π
e−z

2/2 dz dy

=
1√
2π

∫ ∞
0

e−y lim
ε→0

2ε/
√
Amy

2ε
exp

(
− x2

2Amy

)
dy

=
1√

2πAm

∫ ∞
0

e−yy−1/2 exp

(
− x2

2Amy

)
dy.

By the substitution y = t2 (and dy = 2t dt), this becomes√
2

πAm

∫ ∞
0

exp

(
−
(
t2 +

x2

2Amt2

))
dt.

By applying Lemma 5.6 to r = |x|/
√

2Am, the density of
√
AmY Z at x is equal to√

2

πAm
·
√
π

2
exp

(
−
√

2

Am
|x|
)

=

√
1

2Am
exp

(
−
√

2

Am
|x|
)
.

Recall that this was the density of a jump in X corresponding to an event in Nm. Since these jumps
occur with rate Hm for all m, the jump kernel of X is

j(r) =

∞∑
m=0

Hm ·
√

1

2Am
exp

(
−
√

2

Am
r

)
.

Now we can complete the proof that this SBM does not satisfy EHI. We will use almost the exact same
proof strategy as we did in Theorem 5.1, but with (5.21) now playing the role of (1.4).
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Example 5.8. For all m, let Hm = 2−m and Am = 2m
2

. Let S = (St) be the Lévy process on [0,∞) such
that for all m ∈ Z+, S takes jumps of size Am times a standard exponential random variable, with rate Hm.
Let X = (Xt) be the SBM on R with subordinator S.

Then the Lévy measure of S is continuous, and its density is decreasing. Furthermore, X does not satisfy
EHI.

Proof. The density of the Lévy measure of S is given by (5.19). It is a sum of decreasing functions, and
therefore is itself decreasing.

All that remains is to show that X does not satisfy EHI. To do this, we will very closely follow the proof
of Theorem 5.1. For all n, let

Rn :=

√
An
8

log

(
An+1

An

)
.

It follows from the definitions of Hn and Rn (and a bit of symbolic manipulation) that

Hn

√
1

2An
exp

(
−
√

2

An
Rn

)
= 2−n

√
1

2An+1

and
∞∑

m=n+1

Hm

√
1

2Am
exp

(
−
√

2

Am
Rn

)
≤

∞∑
m=n+1

2−m

√
1

2An+1
= 2−n

√
1

2An+1
.

Thus,
∞∑

m=n+1

Hm

√
1

2Am
exp

(
−
√

2

Am
Rn

)
≤ Hn

√
1

2An
exp

(
−
√

2

An
Rn

)
.

Therefore, when we consider the sum j(Rn) =
∑∞
m=0Hm

√
1/(2Am) exp

(
−
√

2/AmRn

)
, the terms from

m = 0 to m = n contribute at least half of the total value:

n∑
m=0

Hm

√
1

2Am
exp

(
−
√

2

Am
Rn

)
≥ 1

2

∞∑
m=0

Hm

√
1

2Am
exp

(
−
√

2

Am
Rn

)
. (5.22)

For all n, let f(n) := Rn/
√
An = 1

8 log(An+1/An). Note that An+1/An → ∞, so f(n) → ∞. For all
m ≤ n,

exp
(
−
√

2
Am
· Rn2

)
exp
(
−
√

2
Am

Rn

) = exp

(√
2

Am
· Rn

2

)
≥ exp

(√
2

An
· Rn

2

)
= exp

(
f(n)√

2

)
→∞ (5.23)

Comparing j(Rn/2) and j(Rn),

j(Rn/2) =

∞∑
m=0

Hm

√
1

2Am
exp

(
−
√

2

Am
· Rn

2

)
(by (5.21))

≥
n∑

m=0

Hm

√
1

2Am
exp

(
−
√

2

Am
· Rn

2

)

≥ exp

(
f(n)√

2

) n∑
m=0

Hm

√
1

2Am
exp

(
−
√

2

Am
Rn

)
(by (5.23))

≥ 1

2
exp

(
f(n)√

2

) ∞∑
m=0

Hm

√
1

2Am
exp

(
−
√

2

Am
Rn

)
(by (5.22))

=
1

2
exp

(
f(n)√

2

)
j(Rn) (by (5.21)).

In other words,
j(Rn)

j(Rn/2)
≤ 2 exp

(
−f(n)√

2

)
→ 0. (5.24)
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For all n, let Tn be the first time that an event occurs in the Poisson process Nm for any m > n. (In
other words, Tn is the first time that S takes a jump of size Am times a standard exponential, for m > n).
Let θn := E [S(Tn−)]. It follows from the probabilistic interpretation of Lévy measure that

θn =

∑n
m=0HmAm∑∞
m=n+1Hm

= 2n
n∑

m=0

2m
2−m

= 2n
2

n∑
m=0

2(m
2−m)−(n2−n)

= 2n
2

(
1 +

n−1∑
m=0

2(m(m−1))−(n(n−1))

)
≤ 2n

2
(

1 + (n− 1)2((n−1)(n−2))−(n(n−1))
)

= 2n
2
(

1 + (n− 1)2−2(n−1)
)
.

Thus, θn is on the order of 2n
2

for large n.
Note also that

R2
n =

An
8

(
log

(
An+1

An

))2

=
2n

2

8

(
log

(
2n

2+2n+1

2n2

))2

=
2n

2

8

(
2n+ 1

log2 e

)2

so R2
n is on the order of 2n

2

n2. Recall that An+1 = 2(n+1)2 . We therefore have An+1 � R2
n � θn.

Choose some sequences (Qn) and (qn) such that An+1 � Qn � R2
n � qn � θn. By the same argument

as in the end of the proof of Theorem 5.1, with high probability, |Xt| is less than
√
qn for all t < Tn, and

|X(Tn)| is greater than
√
Qn. We therefore have

P0

(
XτB(0,Rn/20)

∈ B(0, 10Rn)
)
→ 0. (5.25)

By (5.24) and (5.25), X satisfies the conditions of Theorem 1.1 for c = 1/2 and α = 1/20, so X does not
satisfy EHI.
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Figure 5.1: The ratio j(r)/j(r/2) for Examples 5.3 and 5.8. In both cases, the x-axis is distorted so
that

√
Am and

√
Am+1 are the same distance away for all m. The points corresponding to r = Rm are

shown using red dots. (In all cases,
√
Am ≤ Rm ≤

√
Am+1.) Note that Rm is not necessarily the exact

local minimizer, but the limit along the sequence {Rm} is 0.
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