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Abstract

We show that the bounded solutions to the fractional Helmholtz equation,
(−∆)su = u for 0 < s < 1 in Rn, are given by the bounded solutions to
the classical Helmholtz equation (−∆)u = u in Rn for n ≥ 2 when u is ad-
ditionally assumed to be vanishing at ∞. When n = 1, we show that the
bounded fractional Helmholtz solutions are again given by the classical
solutions A cosx + B sinx. We show that this classification of fractional
Helmholtz solutions extends for 1 < s ≤ 2 and s ∈ N when u ∈ C∞(Rn).
Finally, we prove that the classical solutions are the unique bounded so-
lutions to the more general equation ψ(−∆)u = ψ(1)u in Rn, when ψ is
complete Bernstein and certain regularity conditions are imposed on the
associated weight a(t).

1 Introduction

1.1 Motivation and Main Results

An elementary result is that bounded solutions to the equation −uxx = u in
R are given in the form: u(x) = A cosx+B sinx. In higher dimensions, bounded
solutions to the classical Helmholtz equation −∆u = u on Rn are expressed
in terms of Bessel functions and spherical harmonics (see Appendix and also
[2]). These higher dimensional solutions are C∞, bounded, and vanishing at
∞. Helmholtz functions arise frequently when solving PDEs such as the heat
equation and the wave equation via separation of variables. They also play
fundamental roles in inverse problems and scattering theory.

In recent years, there is a growing interest in the fractional Laplacian (−∆)s,
with 0 < s < 1, due to various applications involving nonlocal diffusion [4]. A
natural question is to classify solutions to the fractional Helmholtz equation
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(−∆)su(x) = u(x) in Rn. (1.1)

In the first theorem of this paper, we prove that the bounded and vanishing
fractional Helmholtz solutions to (1.1) are the same as the classical Helmholtz
solutions.

Theorem 1.1. Let u(x) ∈ L∞(Rn). If n = 1 and 0 < s < 1, then all solutions
to (−∆)su = u in R are A cos(x) + B sin(x) for some constants A,B ∈ R. If
n ≥ 2 and we assume that u(x)→ 0 as |x| → ∞, then u solves (−∆)su = u in
Rn for 0 < s < 1 if and only if (−∆)u = u in Rn.

Remark: The case of n = 1 was first proved by Fall and Weth in [9].

We will then show that this result can be generalized to powers 1 < s ≤ 2
by reducing this case to the previous case 0 < s < 1.

Theorem 1.2. Let u(x) ∈ C∞(Rn)
⋂
L∞(Rn). Then u solves (−∆)su = u in

Rn for 0 < s ≤ 2 if and only if (−∆)u = u in Rn.

For s > 2, we have the following classification result for the polyharmonic
Helmholtz equation.

Theorem 1.3. Let u(x) ∈ C∞(Rn)
⋂
L∞(Rn) and m ∈ N. Then u solves

(−∆)mu = u in Rn if and only if (−∆)u = u in Rn.

Finally, we will consider the Helmholtz equation for complete Bernstein func-
tions ψ of the Laplace operator. The Bernstein Helmholtz equation is given by

ψ(−∆)u(x) = u(x) in Rn. (1.2)

ψ(t) is said to be a complete Bernstein function if ψ(t) = L{f}(t)
t , where L is

the Laplace transform and f : [0,∞) → [0,∞) is completely monotone, i.e.
(−1)kf (k) ≥ 0. In particular, ψ(t) generalizes ts with 0 < s < 1.

Theorem 1.4. Let n ≥ 2. Suppose u(x)→ 0 as |x| → ∞ and that the associated
weight a(t) for ψ(−∆) in the extension problem (1.5) is A2 and obeys a(t) ∼ tα
for t� 1 and −1 < α < 1. Then u ∈ L∞(Rn) solves ψ(−∆)u = ψ(1)u in Rn if
and only if (−∆)u = u in Rn.
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1.2 Preliminaries

Recall that (−∆)s is defined via the Fourier multiplier |ξ|2s, such that in the
distributional sense, we have

̂(−∆)su(ξ) = |ξ|2sû(ξ).

We will also use two other definitions. The first is via the singular integral

(−∆)su(x) = cn,sP.V
´
Rn

u(x)−u(y)
|x−y|n+2s dy where cn,s is a normalization constant.

The second definition, made famous by Caffarelli and Silvestre in [6], charac-
terizes (−∆)su(x) by its harmonic extension u̇(x, t). In particular, u̇(x, t) ∈
H1
loc(R

n+1
+ , t1−2s) weakly solves the harmonic equation:

∇ · (t1−2s∇u) = t1−2s[∆xu̇+
1− 2s

t
u̇t + u̇tt] = 0 on Rn+1

+ ,

lim
t→0

t1−2su̇t(x, t) = −cn,s(−∆)su on Rn,

u̇(x, 0) = u(x) on Rn × {0}. (1.3)

Similarly, for complete Bernstein functions ψ(x), ψ(−∆) is defined via the
Fourier multiplier ψ(|ξ|2), such that in the distributional sense, we have

̂ψ(−∆)u(ξ) = ψ(|ξ|2)û(ξ).

From [12], for any complete Bernstein function ψ, we may characterize ψ(−∆)
using the harmonic extension u̇(x, t) ∈ H1

loc(R
n+1
+ , a(t)), which solves

∂2
s u̇(x, s) +A(s)∆xu̇(x, s) = 0 on Rn+1

+ ,

∂su̇(0, x) = −ψ(−∆)u(x) on Rn,
u̇(x, 0) = u(x) on Rn × {0}, (1.4)

where A(s) is a locally finite measure on some interval [0, R), with R possibly
infinite. If A(s) is non-negative and L1

loc, then we may apply the change of
variables: ds = (a(t))−1dt and A(s)ds = a(t)dt. We call a(t) the associated
weight to equation (1.2). This reduces (1.4) to the familiar form:

∇ · (a(t)∇u̇) = 0 on Rn+1
+ ,

lim
t→0

a(t)u̇t(x, t) = −cn,aψ(−∆)u(x) on Rn. (1.5)

For the rest of the paper, the trace condition u̇(x, 0) = u(x) will be implicitly
assumed.

1.3 Comments about the proofs

Since (−∆)s and ψ(−∆) are non-local operators, it is difficult to solve these
nonlocal Helmholtz equations directly. We cannot apply separation of variables
as in the s = 1 case (shown in Appendix), and in general, it is not easy to
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compute the integral (−∆)su explicitly. To prove compatibility of classical
solutions with other Helmholtz equations, it is helpful to consider the equivalent
extension problem, i.e. (1.3) for (−∆)s and (1.4), (1.5) for ψ(−∆). This way, the
problem is reformulated as a second order elliptical partial differential equation.

Uniqueness of fractional Helmholtz solutions in the class of bounded vanish-
ing functions for n ≥ 2 is achieved by working with the extension problem and
using standard energy techniques, following the seminal work of [10]. The n = 1
case is handled separately.

Similar but more sophisticated techniques will be used to prove uniqueness
in the general case where we consider the solutions to ψ(−∆)u = u. a(t) ∈ A2 is
assumed to achieve appropriate Hölder estimates and the asymptotic behaviour
a(t) ∼ tα is assumed to apply the estimate |u̇t| ≤ C

t from [5, Prop 4.6].

2 Fractional Helmholtz Solutions 0 < s < 1

Proof of Theorem 1.1: When n ≥ 2, Theorem 1.1 is a corollary of Lemma
2.1 and Lemma 5.2. When n = 1, Theorem 1.1 is a corollary of Lemma 2.1 and
Lemma 2.3.

Lemma 2.1. If u ∈ L∞(Rn) solves −∆u = u in Rn, then (−∆)su = u in Rn
for 0 < s < 1.

Proof : Suppose that u ∈ L∞(Rn) and −∆u = u on Rn. It suffices to show
that the extension problem (1.3) for (−∆)su = u is solvable. Hence, it suffices
to show that there is an extension u̇(x, t) = u(x)φ(t) with φ(0) = 1 such that

φ(t)∆u(x) + u(x)
1− 2s

t
φ′(t) + u(x)φ′′(t) = 0 on Rn+1

+ ,

lim
t→0

t1−2su(x)φ′(t) = −cn,s(−∆)su(x) = −cn,su(x) on Rn. (2.1)

Since u is a classical Helmholtz solution, (2.1) reduces to

−φ(t) +
1− 2s

t
φ′(t) + φ′′(t) = 0 for t ≥ 0,

lim
t→0

t1−2sφ′(t) = −cn,s ∈ R. (2.2)

It suffices to solve (2.2) with the initial condition φ(0) = 1. This ODE is solved
in [6, Section 3.2].

We now show that [10, Thm 1] can be generalized to non-radial functions in
the following sense:

Lemma 2.2. Let n ≥ 2, V (r) ∈ C∞(Rn) be radially non-decreasing and u be
a bounded and vanishing function satisfying (−∆)su+ V (r)u = 0 on Rn. Then
the projection of u onto any spherical harmonical eigenfunction is unique up to
a constant factor.
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Proof: Let n ≥ 2 and u ∈ L∞(Rn) be vanishing and solve (−∆)su+V (r)u = 0
on Rn where V (r) is radially non-decreasing and differentiable. First, we use
eigenfunction decomposition with spherical harmonics to reduce this problem to
the case where u is additionally assumed to be radial. In particular, we consider
the extension u̇(x, t), which solves (1.3). Using spherical harmonics, we obtain
the decomposition

u̇(r, θ, t) =
∑
l

u̇l(r, t)φl(θ),

where ∆Sn−1φl(θ) = −µlφl(θ) and µl = l(l + n − 2). Note that for each fixed
eigenvalue µl, there may be multiple associated eigenfunctions φl included in

the sum. Then, since ∆xu = ∂2
ru+ n−1

r ∂ru+
∆Sn−1u

r2 and {φl}l is an orthogonal
family, for each l, we may substitute u̇ = u̇l(r, t)φl(θ) into (1.3) to yield

u̇l,rr +
n− 1

r
u̇l,r +

1− 2s

t
u̇l,t + u̇l,tt −

µlu̇l
r2

= 0 on Rn+1
+ ,

lim
t→0

t1−2su̇l,t = cn,sV (r)u̇l(r, 0) := cn,sV (r)ul(r) on Rn. (2.3)

Note that u(x) =
∑
u̇l(r, 0)φl(θ) =

∑
ul(r)φl(θ) by substituting t = 0. Now,

let v̇l(r, t) = r−lu̇l(r, t) and vl(r) = r−lul(r). This yields the system:

v̇l,rr +
2l + n− 1

r
v̇l,r +

1− 2s

t
v̇l,t + v̇l,tt = 0 on Rn+1

+ ,

lim
t→0

t1−2sv̇l,t = cn,sV (r)vl(r) on Rn. (2.4)

In particular, the last term of the first condition of (2.3) cancels since µl =
l(l + n − 2) = l(l − 1) + l(n − 1). Now, note that each vl is bounded, radial,
and vanishing, so we may use the proof of [10, Thm 1] to show that each vl is
unique. To simplify notation, we redefine u = vl, u̇ = v̇l, and V (r) = cn,sV (r).
Following [10, (4.6)], we define the energy H(r) on u as

H(r) =
1

2

[ˆ ∞
0

t1−2s(u̇2
r − u̇2

t )dt− V (r)u(r)2

]
. (2.5)

In [10, Prop B.2], it is shown that H(0) ≤ − 1
2V (0)u(0)2 and H(∞) = 0 for any

radial u(r) vanishing at infinity. We now show that H ′(r) ≤ 0 for u(r) = vl(r).
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We compute

H ′(r) =

ˆ ∞
0

d

dr

t1−2s

2
(u̇2
r − u̇2

t )dt−
1

2
V ′(r)u(r)2 − V (r)u(r)u′(r)

=

ˆ ∞
0

t1−2su̇ru̇rrdt−
ˆ ∞

0

t1−2su̇tu̇rtdt−
1

2
V ′(r)u(r)2 − V (r)u(r)u′(r))

=

ˆ ∞
0

t1−2su̇ru̇rrdt− t1−2su̇tu̇r|t=∞t=0

+

ˆ ∞
0

t1−2su̇r

(
1− 2s

t
u̇t + u̇tt

)
dt− 1

2
V ′(r)u(r)2 − V (r)u(r)u′(r))

=

ˆ ∞
0

t1−2su̇r

(
u̇rr +

1− 2s

t
u̇t + u̇tt

)
dt− 1

2
V ′(r)u(r)2)

= −2l + n− 1

r

ˆ ∞
0

t1−2su̇2
rdt−

1

2
V ′(r)u(r)2 ≤ 0. (2.6)

In the second to last equality, note that −t1−2su̇tu̇r|t=∞t=0 = V (r)u(r)u′(r) results
from applying the boundary condition (2.4) and the estimate |u̇t(x, t)| ≤ C

t from
[5, Prop 4.6]. The last equality is due to the first condition in (2.4) and this
expression is non-positive since n ≥ 2, l ≥ 0, and V ′(r) ≥ 0.

If u(0) = 0, then it is clear that H(r) = 0 and dH
dr = 0 given the properties

of H(r) established above. If n ≥ 2, then we may immediately conclude that
ur = 0 from (2.6) and hence u = 0. Equivalently, since (2.4) is a linear system,
u = vl must be the unique bounded and vanishing solution to (2.4) up to a
constant factor.

Lemma 2.3. If u ∈ L∞(R) solves (−∆)su = u in R, then u
′′

= u in R.

Proof : Recall that the Helmholtz solutions on R are u(x) = A cos(x)+B sin(x).
We may assume (−∆)su = u and u ∈ S′(R), the space of tempered distributions.
Then, taking the Fourier transform on both sides gives |ξ|2sû(ξ) = û(ξ) in the
weak sense. A quick proof is shown below. For all φ ∈ S(R):

〈û, φ〉 =

ˆ
((−∆)su)φ̂ =

ˆ
u(−∆)sφ̂ =

ˆ
û|ξ|2sφ = 〈|ξ|2sû(ξ), φ〉 (2.7)

Because the Fourier transform is a bijective map from S
′ → S

′
, we note

that û(ξ) ∈ S
′
(R) and it has support {−1, 1}. Thus, we may write û(ξ) =∑

{α≤N} Cα∂
αδ−1 + Dα∂

αδ1 for some constants N,Cα, Dα. Then, taking the

inverse transform, we see that u(x) = a(x) sin(x) + b(x) cos(x) for some polyno-
mials a(x) and b(x). Since u is bounded, u(x) = A cos(x) +B sin(x).

3 Fractional Helmholtz Solutions 1 < s ≤ 2

In this section, we consider fractional Helmholtz solutions with 1 < s ≤ 2.
Existence can be proved in a similar way as in Lemma 2.1, by using the ex-
tension problem from [7]. Instead we present a new proof by decomposition of
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nonlocal operators. To do so, we use the fact that we can rewrite (−∆)su with
1 < s ≤ 2 in terms of the standard fractional laplacian with 1

2 < s/2 ≤ 1 when
u has sufficient regularity. We also use this decomposition to prove uniqueness.

Proof of Theorem 1.2: This is a corollary of Lemma 3.2 and Lemma 3.3.

Lemma 3.1. Let u ∈ C∞(Rn)
⋂
L∞(Rn). Then for 1 < s ≤ 2, we have

(−∆)su = (−∆)s/2[(−∆)s/2u].

Proof: Let u ∈ C∞(Rn)
⋂
L∞(Rn) and 1 < s ≤ 2. We consider the definition

of (−∆)s from [1]:

(−∆)su = L2,su = cn,2,s

ˆ
u(x− 2y)− 4u(x− y) + 6u(x)− 4u(x+ y) + u(x+ 2y)

|y|n+2s
dy.

Note also that L1,s/2u = (−∆)s/2u. Thus, we want to show that L1,s/2(L1,s/2u) =
L2,su. In [1, Thm 1.9] this is obtained for all φ ∈ C∞c (Rn) since

F (L2,sφ)(ξ) = |ξ|2sF (φ)(ξ) = |ξ|sF (L1,s/2φ)(ξ) = F (L1,s/2(L1,s/2φ))(ξ).
(3.1)

Now, since u ∈ L∞(Rn)
⋂
C∞(Rn), we may apply [1, Lemma 1.5], which

tells us that for any φ ∈ C∞c (Rn),

ˆ
Rn
u(x)L2,sφ(x)dx =

ˆ
Rn
φ(x)L2,su(x)dx,

ˆ
Rn
u(x)L1,s/2φ(x)dx =

ˆ
Rn
φ(x)L1,s/2u(x)dx. (3.2)

The desired result then follows from applying (3.1) and (3.2).

ˆ
Rn
φ(x)L2,su(x)dx =

ˆ
Rn
u(x)L2,sφ(x)dx =

ˆ
Rn
u(x)L1,s/2(L1,s/2φ(x))dx

=

ˆ
Rn
L1,s/2u(x)L1,s/2φ(x)dx =

ˆ
Rn
φ(x)L1,s/2(L1,s/2u(x))dx (3.3)

Lemma 3.2. If u solves (−∆)u = u in Rn and u ∈ C∞(Rn)
⋂
L∞(Rn), then

u also solves (−∆)su = u in Rn for 1 < s ≤ 2.

Proof: Let 1 < s ≤ 2 and u ∈ C∞(Rn)
⋂
L∞(Rn) solve (−∆)u = u in Rn. By

Theorem 1.1, (−∆)s/2u = u since s/2 ∈ (0, 1]. We then apply Lemma 3.1 to
yield

(−∆)su = (−∆)s/2[(−∆)s/2u] = (−∆)s/2u = u. (3.4)

To prove uniqueness of these fractional solutions, it suffices to show that all
solutions (−∆)su = u, with 1 < s ≤ 2, satisfy (−∆)s/2u = u, since uniqueness
has already been shown for s ∈ (0, 1] with Lemma 2.2 and Lemma 2.3.
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Lemma 3.3. Let 1 < s ≤ 2. If u ∈ C∞(Rn)
⋂
L∞(Rn) solves (−∆)su = u on

Rn, then (−∆)s/2u = u on Rn.

Proof: Let 1 < s ≤ 2. and (−∆)su = u on Rn. We can define the system{
v = (−∆)s/2u− u,
(−∆)s/2v + v = 0.

(3.5)

By Lemma 3.1, it suffices to show that v = 0. We proceed by using the
Maximum Principle. Let w(x) = C + |

√
1 + x2|ρ with ρ < s. We first claim

that we can construct w such that (−∆)s/2w + w > 0. To see this, note that
|
√

1 + x2|ρ asymptotically behaves like |x|ρ while remaining uniformly bounded
for x close to y. Hence, we may let x = αx̃, y = αỹ and compute

(−∆)s/2w(x) = cn,sP.V

ˆ
Rn

|
√

1 + x2|ρ − |
√

1 + y2|ρ

|x− y|n+s
dy

= cn,sP.V

ˆ
Rn

|
√

1 + α2x̃2|ρ − |
√

1 + α2ỹ2|ρ

αn+s|x̃− ỹ|n+s
αndỹ ∼ αρ−s(−∆)sw(x̃). (3.6)

Then, since ρ− s < 0 and (−∆)sw(x̃) is bounded because the integrand in the
last line of (3.6) is o(|y|n), we may pick α, ρ, C such that (−∆)s/2w + w > 0.
Now, let ṽ = v − εw. We immediately see that

(−∆)s/2ṽ + ṽ = (−∆)s/2v + v − ε((−∆)s/2w + w)

= −ε((−∆)s/2w + w) < 0. (3.7)

Note that v = o(w) = o(|x|ρ) since we can choose ρ arbitrarily close to s and
v = o(|x|s). Therefore, ṽ(∞) = −∞ and ṽ ∈ C2(Rn) by Lemma 5.4. From this,
we may deduce that there is some x0 such that ṽ(x0) = max

x∈Rn
v(x). Hence, we

may use the fact that (−∆)s/2ṽ(x0) = P.V
´ ṽ(x0)−ṽ(y)
|x0−y|n+s ≥ 0 and (3.7) to obtain

the inequalities

0 ≤ (−∆)s/2ṽ(x0) < −ṽ(x0) =⇒ v(x)− εw(x) ≤ v(x0)− εw(x0) ≤ 0. (3.8)

Taking ε→ 0 yields v(x) ≤ 0. By a symmetric argument, if we let ṽ = εw − v,
then we would have (−∆)s/2ṽ + ṽ > 0 and v(x) ≥ 0. This proves v(x) = 0 as
desired.

4 Polyharmonic Helmholtz Solutions

In this section, we consider Helmholtz solutions to the equation

(−∆)mu = u in Rn, where m ∈ N. (4.1)
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Proof of Theorem 1.4: From Lemma 3.2, it is clear that −∆u = u will
solve (−∆)mu = u for any m ∈ N and we have already shown uniqueness
when m = 1, 2. Let us now consider the case m = 3. To prove uniqueness of
the classical solutions in the class of bounded functions, we may consider the
system

v = −∆u− u,
∆2v −∆v + v = 0. (4.2)

It suffices to show that v = 0. To do so, let η be a cutoff function supported
in B2R. We may multiply the bottom equation by η2v and integrate by parts
to yield

ˆ
(∆(ηv))2 +

ˆ
|∇ηv|2 +

ˆ
η2v2 = −2

ˆ
v∆v|∇η|2 + vη∇v · ∇η

+ 4

ˆ
(∇η · ∇v)2 + v∆η∇η · ∇v +

ˆ
v2(∆η)2 − v2η∆η. (4.3)

Then, note that we may pick η such that |∇η| . 1
R . Also, from standard

elliptical theory, since u ∈ L∞(Rn), it follows that all of its derivatives are
uniformly bounded as well. Thus, after using integration by parts and Cauchy-
Schwarz on the right hand side of (4.3), we obtain the inequality

ˆ
B2R

(∆v)2 + |∇v|2 + v2 .
1

R2

ˆ
B2R

v2 + |∇v|2. (4.4)

Hence, we may iterate the inequality (4.4) on its own right hand side, such
that the bound is scaled by 1

R2 each time. Taking R → ∞ then yields the
desired result v ≡ 0.

When m ≥ 4 we modify the system (4.2) such that v = −∆u − u satisfies∑m−1
j=0 (−∆)jv + v = 0. The case of m ≥ 4 can be proved similarly as that of

m = 3. We omit the details. This proves Theorem 1.3.

5 Complete Bernstein Helmholtz Solutions

We now classify solutions to the Helmholtz equation ψ(−∆)u = u in Rn when ψ
is complete Bernstein. Without loss of generality, we assume that the extension
u̇ is bounded in Rn+1

+ .

Proof of Theorem 1.4: Theorem 1.4 is a corollary of Lemma 5.1 and Lemma
5.2.

Lemma 5.1. If −∆u = u on Rn, then u also solves ψ(−∆)u = ψ(1)u on Rn.
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Proof: Recall the extension problem for ψ(−∆)u = ψ(1)u on Rn given by

∂2
s u̇(x, s) +A(s)∆xu̇(x, s) = 0 on Rn+1

+ ,

∂su̇(0, x) = −ψ(1)u(x) on Rn. (5.1)

Now, let u̇(x, s) = φ(s)u(x) such that φ(0) = 1. Since −∆u(x) = u(x) on Rn,
the problem reduces to finding a function φ(s) satisfying

φ′′(s) = A(s)φ(s) for s ≥ 0,

φ′(0) = −ψ(1) ∈ R,
φ(0) = 1. (5.2)

By [12, Section 3.1], a solution φ exists. In particular, we may let λ = 1 in [12,
(3.1)] and set ϕ1 = φ.

To show uniqueness, we have only been able to provide a proof in the special
case where a(t) ∈ A2 and a(t) ∼ tα, |α| < 1 for t� 1. By scaling the solution,
it suffices to consider the case ψ(1) = 1.

Lemma 5.2. Let u be bounded and vanishing solution to the equation ψ(−∆)u =
ψ(1)u on Rn where n ≥ 2 and the associated weight a(t) in the extension problem
(1.5) is A2 and obeys a(t) ∼ tα, |α| < 1 for t� 1. Then u satisfies −∆u = u.

Proof: Let ψ(−∆)u = ψ(1)u on Rn. We mimic (2.2)-(2.3) from the proof of
Lemma 2.2. Consider the extension u̇(x, t), which solves (1.5), and decompose
it with spherical harmonics to express u̇(r, θ, t) =

∑
u̇l(r, t)φl(θ). Then, let

v̇l(r, t) = r−lu̇l(r, t) and vl = r−lul(r) := r−lu̇l(r, 0). For each l, v̇l satisfies

∂t(a(t)∂rv̇l) +
2l + n− 1

r
a(t)∂rv̇l + a(t)∂2

r v̇l = 0,

lim
t→0

a(t)∂tv̇l(r, t) = −ca,sψ(1)vl(r). (5.3)

To prove that each vl is unique up to a constant factor in the class of bounded
and vanishing functions, it suffices to show that vl(0) = 0 implies vl ≡ 0, since
(5.3) is a linear system. For simplicity, let v̇l = v̇, vl = v, and −ca,sψ(1) = c.
Then, multiply the first equation in (4.3) by v̇r to get

∂t(a(t)∂rv̇)∂rv̇ +
2l + n− 1

r
a(t)(∂rv̇)2 + a(t)∂rv̇∂

2
r v̇ = 0. (5.4)

Note that the middle term is non-negative. We now integrate the other two
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terms over (0,∞)× (0,∞) and show that these integrals are also non-negative.

ˆ ∞
0

ˆ ∞
0

(a(t)v̇t)tv̇r + a(t)v̇rv̇rrdtdr

=

ˆ ∞
0

ˆ ∞
0

a(t)

(
v2
r − v2

t

2

)
r

drdt+

ˆ ∞
0

a(t)v̇tv̇r|t=∞t=0 dr

=

ˆ ∞
0

a(t)

2

(
v̇2
r(r, t)− v̇2

t (r, t)
)
|r=∞r=0 dt+

ˆ ∞
0

lim
t→∞

a(t)v̇t(r, t)v̇r(r, t) + cv(r)v̇r(r, 0)dr

=

ˆ ∞
0

a(t)

2

(
lim
r→∞

v̇2
r(r, t) + v̇2

t (0, t)
)
dt+ c

ˆ ∞
0

(
v̇2(r, 0)

2

)
r

dr

=

ˆ ∞
0

a(t)

2

(
lim
r→∞

v̇2
r(r, t) + v̇2

t (0, t)
)
dt− cv2(0)

2
. (5.5)

Three cancellations were performed to obtain the second to last equality. First,
lim
r→∞

a(t)v̇t(r, t)
2 = 0 due to Parseval’s Theorem and Lemma 5.3. Second,

a(t)v̇r(0, t)
2 = 0 since v̇r(0, t) = 0 follows from Lemma 5.4. Third, note that

limt→∞ a(t)v̇t(r, t)v̇r(r, t) = 0 follows from the estimate |v̇t(x, t)| ≤ C
t , which

can be shown from a similar rescaling argument done in the proof of [5, Prop
4.6]. This is where we use the assumption that for sufficiently large t, a(t) ∼ tα
for some |α| < 1. Then, from (5.4) and (5.5), we may easily compute

1

2

ˆ ∞
0

a(t)(v̇r(∞, t)2 + v̇t(0, t)
2)dt+

ˆ ∞
0

ˆ ∞
0

2l + n− 1

r
a(t)(v̇r)

2drdt− cv2(0)

2
= 0.

(5.6)

Each of these terms are non-negative since a(t) ∈ A2 implies that a(t) > 0 a.e.
and v(0) = 0 is assumed. Thus, if n ≥ 2, then we may conclude v̇r(r, t) = 0
∀t ≥ 0 . Since v(0) = 0, then v ≡ 0 as desired. Hence, each ul(r) is unique up
to a constant factor and u(r, θ) =

∑
l clul(r)φl(r) for some constants cl. The

result follow from Lemma 5.1 and the fact that if u(r, θ) =
∑
l ul(r)φl(r) solves

−∆u = u, then ũ(r, θ) =
∑
l clul(r)φl(r) also solves −∆u = u.

Lemma 5.3. Let u ∈ L∞(Rn) solve (1.2) and u̇ solve (1.5) with a(t) ∈ A2 and
u̇(x, 0) vanishing at infinity. Then we have lim

|x|→∞
a(t)u̇t(x, t)

2 = 0.

Proof: Let Ω = BR(x0) × [0, R] ⊂ Rn+1
+ . By expanding and rearranging the

first condition of the extension problem (1.5), u̇ solves

(a(t)u̇t)t = −a(t)∆xu̇ in Ω,

a(t)u̇t = u on Ω ∩ {t = 0}. (5.7)
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This holds for any fixed x0 and R. Let (x, t) ∈ Ω. By the Fundamental Theorem
of Calculus,

a(t)u̇t(x, t)− u(x) = −
ˆ t

0

a(s)∆xu̇(x, s)ds. (5.8)

Since a(t) is locally integrable, we obtain the estimate

‖a(t)u̇t(x, t)‖L∞(Ω) ≤ ‖u‖L∞(Ω) +

∣∣∣∣∣
ˆ R

0

a(t)dt

∣∣∣∣∣ ‖∆xu̇(x, t)‖L∞(Ω)

≤ ‖u‖L∞(Ω) + C‖∆xu̇(x, t)‖L∞(Ω), (5.9)

where ‖u‖L∞(Ω) → 0 as x0 →∞ since u(x) is vanishing. The result then follows
after applying interpolation inequalities [11, (6.83), (6.85)] with Lemma 5.4.

Lemma 5.4. If u ∈ L∞(Rn) solves ψ(−∆)u = u on Rn and a(t), from the
extension problem (1.5), is an A2 weight, then u̇(x, ·) ∈ C∞(Rn) and hence
u ∈ C∞(Rn).

Proof: Let QR = BR(0)× (0, R) ⊂ Rn+1
+ and ∂′QR = BR(0)×{0}. The result

follows after adapting [15, Thm 1.2] for a(t) ∈ A2 from the case a(t) = t1−2s.
That is, we want to show that if u̇ solves (5.7) with Ω = Q1, then

sup
Q1/2

u̇ ≤ C( inf
Q1/2

u̇). (5.10)

This is because (5.10) implies that ‖u̇‖Cβ(Q1) ≤ C‖u̇‖L∞(Q1) ≤ K < ∞ for
some β > 0 [8, Thm 2.3.15]. Below, in line (5.11), we show that when β < 1,
u̇(x, ·) ∈ Cβ(B1) implies u̇(x, ·) ∈ C2β(B1) with a uniform bound independent
of t. Hence, we know that u̇(x, ·) ∈ C1(B1) and we may then invoke (5.10) on
∇xu̇ and repeat the doubling argument to show that u̇(x, ·) ∈ C2(B1). Iterating
this process infinitely proves the result once we rescale for any R > 1.

Let δ > 0 and v ∈ Rn be a unit vector. We define u̇δ,v(x, ·) := u̇(x+δv,·)−u̇(x,·)
|δ|β .

Note that by (5.10), ‖u̇δ,v(x, ·)‖Cβ(B1) ≤ K for any choice of δ > 0 or ‖v‖ = 1.
Then, we may compute∣∣∣∣ u̇(x+ δv, ·) + u̇(x− δv, ·)− 2u̇(x, ·)

δ2β

∣∣∣∣ =
1

δβ

∣∣∣∣ u̇(x+ δv, ·)− u̇(x, ·)
δβ

− u̇(x, ·)− u̇(x− δv, ·)
δβ

∣∣∣∣
=
|u̇δ,v(x, ·)− u̇δ,v(x− δv, ·)|

δβ
≤ K. (5.11)

By [14], this shows that u̇(x, ·) ∈ C2β(B1). We can then double regularity until
2β > 1 to show u̇(x, ·) ∈ C1(B1).

To prove (5.10), we only need to modify the proof of [15, Lemma 2.3] to
hold for a(t) ∈ A2 since all other steps follow independently. That is, we need
to show that for f(x, t) ∈ C1

c (QR ∪ ∂′QR):
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ˆ
∂′QR

|f |2 ≤ ε
ˆ
QR

|∇f |2a(t) +
C(R)

εδ

ˆ
QR

|f |2a(t). (5.12)

First, by calculus and Young’s inequality, we may show that

ˆ
∂′QR

|f |p = −
ˆ
QR

∂t|f |p = −
ˆ
QR

p|f |p−1sgn(f)∂tf

≤ ε
ˆ
QR

|∇f |p + Cε−
1
p−1

ˆ
QR

|f |p. (5.13)

Next, we claim that for all 0 < l < l0 given some l0 > 1, we have

ˆ
QR

|f |2a(t)−l ≤ C(l)

ˆ
QR

|∇f |2a(t). (5.14)

In fact, by calculus and the Cauchy-Schwarz inequality, we compute

f2(x, t) =

(ˆ R

t

∂tf(x, s)ds

)2

≤

∣∣∣∣∣
ˆ R

t

a(s)−1ds

∣∣∣∣∣
∣∣∣∣∣
ˆ R

t

a(s)|∂tf |2ds

∣∣∣∣∣ . (5.15)

Since a(t) ∈ A2, then we know that a(t) ∈ Am for some 1 < m < 2 [13,
Lemma 5]. By definition,

(
1

R

ˆ R

0

a(t)

)(
1

R

ˆ R

0

a(t)−
m′
m

) m
m′

≤ K, (5.16)

where 1
m + 1

m′ = 1. Let b0 = m′

m and note that b0 > 1 since m < 2 =⇒ m′ > 2.

Then, for R > 0 fixed, we may assume that
´ R

0
a(t) ≥ δ0 > 0. Combining this

fact with (5.16), we get

ˆ R

0

a−b0 ≤ K̃ =⇒
ˆ R

0

a−b ≤ C := R
b0−b
b0 K̃

b
b0 ∀b < b0, (5.17)

where the implication is due to Hölder’s inequality. Then, since 1 < b0, substi-
tuting back into (5.15) yields:

f2(x, t) ≤ C
ˆ R

t

a(s)|∇f |2ds. (5.18)

Hence, multiplying by a(t)−b and integrating proves (5.14) since
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ˆ
QR

a(t)−bf2 ≤ C̃
ˆ R

0

a(t)−b
ˆ
BR

ˆ R

0

|∇f(x, s)|2a(s)dsdx ≤ C
ˆ
QR

|∇f |2a(s).

Finally, using (5.13), Hölder’s and Young’s inequalities, and (5.14) applied
on b = p

2−p and b = 1 in the second last line, we show that

ˆ
∂′QR

|f |2 =

ˆ
∂′QR

(|f |
2
p )p ≤ ε

ˆ
QR

|∇f2/p|p + Cε−
1
p−1

ˆ
QR

|f |2

= ε(
2

p
)p
ˆ
QR

|f |2−pa(t)−p/2|∇f |pa(t)p/2 + Cε−
1
p−1

ˆ
QR

|f |a(t)−1/2|f |a(t)1/2

≤ ε(2

p
)p
(ˆ

QR

|f |2a(t)−
p

2−p

) 2−p
2
(ˆ

QR

|∇f |2a(t)

)p/2
+

Cε−
1
p−1

ˆ
QR

ε1+ 1
p−1 |f |2a(t)−1 + ε−1− 1

p−1 |f |2a(t)

≤ εC
ˆ
QR

|∇f |2a(t) +
C

ε1+ 2
p−1

ˆ
QR

|f |2a(t).

6 Estimates on the Harmonic Extension

In this section, we include some new estimates for the harmonic extension u̇(x, t)
depending on its trace u̇(x, 0) = u(x) when u(x) solves (1.5).

Lemma 6.1. Let u̇(x, t) ∈ L∞(Rn+1
+ ) solve (1.5) such that u(x) = 0, a(t) ∈ A2,

and ψ(−∆)u = u on Rn. Then, u̇(x, t) = 0.

Proof: Let ã(t) be the even extension of a(t) so that ã(t) is an A2 weight on
R. Then, let â(x, t) = ã(t). â would be an A2 weight on Rn+1 by Lemma 6.2.
Thus, if we take the odd extension of u̇ across t = 0, then it will be harmonic
in the sense that div(â∇u̇) = 0 in Rn+1.

Let Y := (Ys)s≥0 be the diffusion process generated by the equation. For
any open and bounded A ⊂ Rn+1, let TA be the hitting time TA = inf{s ≥
0 : Ys ∈ A} and τA be the exit time τA = inf{s ≥ 0 : Ys 6∈ A}. By the
mean value property, we can express u̇(y) = Ey[u̇(YτA)] = E[u̇(YτA)|Y0 = y] for
y = (x, t) ∈ Rn+1.

Given y0 ∈ Rn+1
+ , let x0 be the projection of y0 onto t = 0. It suffices to

show that u̇(y) = 0 ∀y ∈ Ω for any neighbourhood Ω = BnR(x0)× (0, R) ⊂ Rn+1
+

where BnR(x0) ⊂ Rn. Then, let Ωk := Bn2kR(x0) × (0, 2kR), k ≥ 1. Note that
∂Ωk has two parts. The first is Γ1,k := {(x, t) ∈ Ωk : t = 0}. Let the rest of the
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boundary be Γ2,k. Note that u̇(y) = 0 on Γ1,k by assumption. Hence, for any
k ≥ 1 and y ∈ Ω, applying the mean value property yields:

|u̇(y)| = |Ey[u̇(YτΩk )]| ≤ Py(TΓ2,k
< TΓ1,k

)‖u̇(x, t)‖∞. (6.1)

Since ‖u̇(x, t)‖∞ ≤M <∞, it suffices to show that lim
k→∞

Py(TΓ2,k
< TΓ1,k

)→ 0.

Since â(t) ∈ A2 and div(â∇u̇) = 0, u̇ satisfies the elliptic Harnack inequality:
ess supB(y,R) u̇ ≤ CH ess infB(y,R) u̇ for any ball B(y,R) ⊂ Rn+1 [8, Lemma

2.3.5]. Thus, we may apply [3, Lemma 3.7], which shows that for any R̃ > 0,

Py(TB(y1,R̃/4) < τB(y0,R̃)) ≥ p0 > 0 ∀y ∈ B(y0, 7R̃/8), (6.2)

for any y1 ∈ B(y0, R̃/2) ⊂ Rn+1 and such that p0 only depends on the constant
CH from the Harnack inequality. Then, for any k, we pick yk1 as the projection

of y0 onto t = − 2kR
4 and let R̃ = 2kR. Clearly, yk1 ∈ B(y0,

2kR
2 ), which yields

Py(T
B(yk1 ,

2kR
4 )

< τB(y0,2kR)) ≥ p0 > 0 ∀y ∈ B
(
y0,

7 ∗ 2kR

8

)
. (6.3)

Given that the diffusion starts at y ∈ B(y0,
7·2kR

8 ), note that T
B(yk1 ,

2kR
4 )

<

τB(y0,2kR) implies that TΓ1,k
< TΓ2,k

. Thus, for any k,

Py(TΓ2,k
< TΓ1,k

) ≤ 1− p0 ∀y ∈ B
(
y0,

7 · 2kR
8

)
. (6.4)

However, since the diffusion is continuous, then TΓ2,k+1
< TΓ1,k+1

implies that

TΓ2,k
< TΓ1,k

. Since all points on Γ2,k are in B(y0,
7∗2k+1R

8 ), it follows that:

P (TΓ2,k+1
< TΓ1,k+1

|TΓ2,k
< TΓ1,k

) ≤ 1− p0 < 1. (6.5)

Then, by the strong Markov property, we obtain

Py(TΓ2,k
< TΓ1,k

) = P (TΓ2,k
< TΓ1,k

|TΓ2,k−1
< TΓ1,k−1

)P (TΓ2,k−1
< TΓ1,k−1

|TΓ2,k−2
< TΓ1,k−2

)

...Py(TΓ2,1 < TΓ1,1) ≤ (1− p0)k. (6.6)

The result therefore follows after taking k →∞.

Lemma 6.2. If a(t) is a non-negative A2 weight on (0,∞), then it can be
extended to a non-negative A2 weight, â(x, t) on Rn+1.
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Proof: Let q ≥ p ≥ 0. By definition a(t) ∈ A2, a(t) satisfies( q

p

a(t)dt

)( q

p

a(t)−1dt

)
≤ C ⇐⇒

(ˆ q

p

a(t)dt

)(ˆ q

p

a(t)−1dt

)
≤ C|q − p|2.

(6.7)

Let ã(t) be the even extension of a(t). That is, ã(−t) = ã(t) = a(t) for t ≥ 0.
Then ã(t) is an A2 weight on R. To see why, note that the cases q, p ≥ 0 and
q, p ≤ 0 immediately reduce to (6.7), so we only need to check the case when
p̂ := −p > 0 and q > 0. Let M := max{|p|, |q|} = max{p̂, q}. We verify that( q

p

ã(t)dt

)( q

p

ã(t)−1dt

)
=

1

|q − p|

(ˆ 0

p

ã(t)dt+

ˆ q

0

ã(t)dt

)
1

|q − p|

(ˆ 0

p

ã(t)−1dt+

ˆ q

0

ã(t)−1dt

)
≤ 1

|q − p|2

(ˆ p̂

0

a(t)dt+

ˆ q

0

a(t)dt

)(ˆ p̂

0

a(t)−1dt+

ˆ q

0

a(t)−1dt

)

≤ 1

|q − p|2
(
C|p|2 + 2C|M |2 + C|q|2

)
≤ 4C|M |2

|M |2
= 4C.

In the last line, we have expanded the product and used the non-negativity of
a(t), 1

a(t) along with (6.7). Note also that |q − p| = q + p̂ ≥M .

Next, we define â(x, t) = ã(t). Let Bn(x0, R) ⊂ Rn be a ball of radius R cen-
tered around x0, and let t0 ∈ R. Then, for any set QR(x0, t0) = Bn(x0, R)×(t0+
R
2 , t0−

R
2 ), the A2 condition for â(x, t) is satisfied on Rn+1 since it immediately

reduces to the A2 condition on ã(t). Now, let y = (x0, t0) ∈ Rn+1. For any ball
B(y,R) ⊂ Rn+1, note that we may choose R̃ such that B(y,R) ⊂ QR̃(x0, t0),
and |QR̃(x0, t0)| ≤ 2|B(y,R)|. Hence, we have

ˆ
B(y,R)

â(y)dy ≤
ˆ
QR̃(x0,t0)

â(x, t)dxdt

≤ C|QR̃(x0, t0)|2 ≤ 4C|B(y,R)|2.

Lemma 6.3. If u̇(x, t) solves (1.5), such that its trace u̇(x, 0) = u(x) vanishes
at ∞, then lim

hn→∞
‖u̇(x, t)‖QR(x+hn) = 0 where QR(x) = BR(x)×(0, R) ⊂ Rn+1

+ .

Proof: Fix x ∈ Rn and let {hn} be a sequence in Rn such that ‖hn‖ → ∞.
Define u̇n(x, t) = u̇(x + hn, t). For each n, u̇n(x, t) solves (1.5) with trace
u(x + hn). By classical elliptic regularity theory, we know that the limit of
solutions u̇∗ = lim

n→∞
u̇n is also a solution to (1.5) with trace limn→∞ u(x+hn) =

0. Therefore u̇∗ satisfies the conditions for Lemma 6.1, which concludes the proof
since lim

n→∞
u̇∗n = 0.
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7 Conclusion

In this paper, we have shown that the classical Helmholtz solutions −∆u = u
on Rn also solve many other different Helmholtz solutions. First, we classified
these solutions as the bounded and vanishing fractional Helmholtz solutions for
the case 0 < s < 1. In the special case n = 1, we have proved that the Helmholtz
solutions given by A sin(x)+B cos(x) are the bounded fractional solutions using
Fourier analysis. This classification extends to the case 1 < s ≤ 2 and the
polyharmonic case s ∈ N, provided that u ∈ C∞. The uniqueness proofs use two
techniques: the extension and energy monotonicity of [10], and a decomposition
principle. An open question is that this classification result can be extended for
any s ∈ (2,+∞)\N, however the decomposition technique shown in sections 3
and 4 will not suffice for reducing the case s > 2 to the case 0 < s ≤ 1. It is also
an open question whether or not there exist non-vanishing fractional Helmholtz
solutions.

We have also classified Helmholtz solutions for the more general equation
ψ(−∆)u = ψ(1)u when ψ is completely Bernstein. The classical Helmholtz
solutions solve this equation and we have proven that they are unique in the class
of bounded and vanishing functions for n ≥ 2 when we impose the regularity
conditions a(t) ∈ A2 and a(t) ∼ tα for some |α| < 1 and t� 1. These conditions
were imposed to obtain appropriate estimates used in Lemma 5.2 and Lemma
5.4 in order to complete our uniqueness argument. Further research should be
done on whether these regularity restrictions can be relaxed while preserving
the uniqueness of classical Helmholtz solutions for complete Bernstein Helmholtz
solutions.

8 Appendix

We briefly classify the solutions to the classical Helmholtz equation and note
their relationship to Bessel functions for dimensions n ≥ 2. See also [2] for a
complete representation.

Let us first recall that the bounded Bessel function of order ν, denoted by

Jν(r), satisfies the differential equation urr + 1
rur + (1− ν2

r2 )u = 0.

Let n ≥ 2. Using separation of variables and ∆Rnu = urr + n−1
r ur +

∆Sn−1u

r2 ,
it is evident that Helmholtz solutions are of the form:

u(r, θ) =
∞∑
l=0

l∑
m=−l

cl,mr
2−n

2 Jn/2+l−1(r)φl,m(θ)

where φl,m is a Laplacian spherical harmonic of order l and multiplicity m:

∆Sn−1φl,m + µl,mφl = 0, s.t. µl,m = l(l + n− 2).

Acknowledgement

This research is partially supported by NSERC of Canada.

17



References

[1] Nicola Abatangelo, Sven Jarohs, and Alberto Saldaña. “Positive powers of
the Laplacian: From hypersingular integrals to boundary value problems”.
In: Communications on Pure and Applied Analysis 17.3 (2018), pp. 899–
922. issn: 1553-5258. doi: 10.3934/cpaa.2018045. url: http://dx.
doi.org/10.3934/CPAA.2018045.

[2] Shmuel Agmon. “A representation theorem for solutions of the Helmholtz
equation and resolvent estimates for the Laplacian”. In: Analysis, et cetera.
Academic Press, Boston, MA, 1990, pp. 39–76.

[3] Martin T Barlow and Mathav Murugan. “Stability of the elliptic Harnack
inequality”. In: Annals of Mathematics 187.3 (2018), pp. 777–823.

[4] Claudia Bucur and Enrico Valdinoci. “Nonlocal Diffusion and Applica-
tions”. In: Lecture Notes of the Unione Matematica Italiana (2016). issn:
1862-9121. doi: 10.1007/978-3-319-28739-3. url: http://dx.doi.
org/10.1007/978-3-319-28739-3.

[5] Xavier Cabre and Yannick Sire. Nonlinear equations for fractional Lapla-
cians I: Regularity, maximum principles, and Hamiltonian estimates. 2010.
arXiv: 1012.0867 [math.AP].

[6] Luis Caffarelli and Luis Silvestre. “An Extension Problem Related to the
Fractional Laplacian”. In: Communications in Partial Differential Equa-
tions 32.8 (Aug. 2007), pp. 1245–1260. issn: 1532-4133. doi: 10.1080/
03605300600987306. url: http://dx.doi.org/10.1080/03605300600987306.

[7] Sun Yung Alice Chang and Ray A. Yang. “On a class of non-local oper-
ators in conformal geometry”. In: Chin. Ann. Math. Ser. B 38.1 (2017),
pp. 215–234. issn: 0252-9599. doi: 10.1007/s11401-016-1068-z. url:
https://doi.org/10.1007/s11401-016-1068-z.

[8] Eugene B Fabes, Carlos E Kenig, and Raul P Serapioni. “The local reg-
ularity of solutions of degenerate elliptic equations”. In: Communications
in Statistics-Theory and Methods 7.1 (1982), pp. 77–116.

[9] Mouhamed Moustapha Fall and Tobias Weth. “Liouville theorems for
a general class of nonlocal operators”. In: Potential Anal. 45.1 (2016),
pp. 187–200. issn: 0926-2601. doi: 10.1007/s11118-016-9546-1. url:
https://doi.org/10.1007/s11118-016-9546-1.

[10] Rupert L. Frank, Enno Lenzmann, and Luis Silvestre. “Uniqueness of
Radial Solutions for the Fractional Laplacian”. In: Communications on
Pure and Applied Mathematics 69.9 (July 2015), pp. 1671–1726. issn:
0010-3640. doi: 10.1002/cpa.21591. url: http://dx.doi.org/10.
1002/cpa.21591.

[11] David Gilbarg and Neil S Trudinger. Elliptic partial differential equations
of second order. Vol. 224. springer, 2015.

18

https://doi.org/10.3934/cpaa.2018045
http://dx.doi.org/10.3934/CPAA.2018045
http://dx.doi.org/10.3934/CPAA.2018045
https://doi.org/10.1007/978-3-319-28739-3
http://dx.doi.org/10.1007/978-3-319-28739-3
http://dx.doi.org/10.1007/978-3-319-28739-3
https://arxiv.org/abs/1012.0867
https://doi.org/10.1080/03605300600987306
https://doi.org/10.1080/03605300600987306
http://dx.doi.org/10.1080/03605300600987306
https://doi.org/10.1007/s11401-016-1068-z
https://doi.org/10.1007/s11401-016-1068-z
https://doi.org/10.1007/s11118-016-9546-1
https://doi.org/10.1007/s11118-016-9546-1
https://doi.org/10.1002/cpa.21591
http://dx.doi.org/10.1002/cpa.21591
http://dx.doi.org/10.1002/cpa.21591
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