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Abstract

The conformal Assouad dimension is the infimum of all possible values of As-
souad dimension after a quasisymmetric change of metric. We show that the confor-
mal Assouad dimension equals a critical exponent associated to the combinatorial
modulus for any compact doubling metric space. This generalizes a similar result
obtained by Carrasco Piaggio for the Ahlfors regular conformal dimension to a larger
family of spaces. We also show that the value of conformal Assouad dimension is
unaffected if we replace quasisymmetry with power quasisymmetry in its definition.

1 Introduction

The Assouad dimension of a metric space (X, d) is defined as

dimA(X, d) = inf

{
β > 0

∣∣∣∣∣ there exists C > 0 such that Nr(B(x,R)) ≤ C
(
R
r

)β
for any x ∈ X, 0 < r < R

}
,

where Nr(A) denotes the minimum number of balls of radii r required to cover A ⊂ X.
Equivalently, Assouad dimension is the infimum of all numbers β > 0 such that there
exists C > 0 so that every ball of radius r has at most Cε−β distinct points whose mutual
distance is at least εr [Hei, Exercise 10.17]. We refer to the recent book by Fraser [Fra]
for a comprehensive background.

We recall the definition of the conformal gauge. This terminology is motivated from
the understanding that quasisymmetric maps are an analogue of conformal maps in the
context of metric spaces.

Definition 1.1 (Conformal gauge). Let (X, d) be a metric space and θ be another metric
on X. We say that d is quasisymmetric to θ, if there exists a homeomorphism η : [0,∞)→
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[0,∞) such that

θ(x, a)

θ(x, b)
≤ η

(
d(x, a)

d(x, b)

)
for all triples of points x, a, b ∈ X, x 6= b.

We say that d is power quasisymmetric to θ if the homeomorphism η above can be chosen
so that η(t) = C(tα ∨ t1/α) for all t > 0, where C, α ∈ [1,∞). The conformal gauge of a
metric space (X, d) is defined as

J (X, d) := {θ : X ×X → [0,∞) | θ is a metric on X, d is quasisymmetric to θ}. (1.1)

We define the power quasisymmetric conformal gauge of (X, d) as

Jp(X, d) := {θ ∈ J (X, d) | θ is power quasisymmetric to d}. (1.2)

The conformal Assouad dimension of (X, d) is defined as

dimCA(X, d) = inf{dimA(X, θ) : θ ∈ J (X, d)}, (1.3)

where dimA(X, θ) denotes the Assouad dimension of (X, θ).

As our main result relates conformal Assouad dimension with combinatorial modulus,
we recall the notion of combinatorial modulus and a critical exponent associated to it.
The combinatorial p-modulus of a family of curves Γ in a graph G = (V,E) is defined as

Modp(Γ, G) = inf

{∑
v∈V

ρ(v)p | ρ : V → [0,∞),
∑
v∈γ

ρ(v) ≥ 1 for all γ ∈ Γ

}
.

Fix parameters a, λ, L > 1. We choose a sequence Xk, k ≥ 0 such that Xk is a maximal
a−k-separated subset of (X, d) and Xk ⊂ Xk+1 for all k ≥ 0. For each k, we define a graph
Gk whose vertex set is Xk and there is an edge between two distinct vertices x, y ∈ Xk if
and only if B(x, λa−k) ∩ B(y, λa−k) 6= ∅. We think of Gk as a sequence of combinatorial
approximations of (X, d) at scale a−k. We define

Mp,k(L) = sup{Modp(Γk,L(x), Gk+n) | x ∈ Xn, n ≥ 0} and Mp(L) = lim inf
k→∞

Mp,k(L),

where Γk,L(x) is the family of paths in Gn+k from B(x, a−n) to B(x, La−n)c (see §4 for
a detailed definition). The critical exponent corresponding to combinatorial modulus is
defined as

CE(X, d) = inf{p > 0 |Mp(L) = 0}.

It is not difficult to show that CE(X, d) is well-defined in the sense that CE(X, d) does
not depend on the precise choices of a, L, λ ∈ (1,∞) and also on the choices of Xk (see
Proposition 4.3). Since it only depends on the metric space (X, d), our notation CE(X, d)
is justified.

Our main result is the following theorem.
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Theorem 1.2. Let (X, d) be a compact metric space such that dimA(X, d) <∞. Then

dimCA(X, d) = CE(X, d) = inf{dimA(X, θ) : θ ∈ Jp(X, d)}.

A similar result was obtained by Carrasco [Car, Theorem 1.3] for the Ahlfors regular
conformal dimension and independently in an unpublished work of Keith and Kleiner.
These works rely crucially on ideas of Keith and Laakso who first related conformal As-
souad dimension to combinatorial modulus [KL]. To state Carrasco’s result, we recall the
definition of Ahlfors regular conformal dimension and related notions. A Borel measure
µ on (X, d) is said to be p-Ahlfors regular if there exists C ≥ 1 such that

C−1rp ≤ µ(B(x, r)) ≤ Crp for all x ∈ X, 0 < r ≤ diam(X, d).

Note that if such a p-Ahlfors regular µ exists, then the p-Hausdorff measure is also p-
Ahlfors regular. The Ahlfors regular conformal dimension is defined as

dimARC(X, d) = inf{p > 0 : θ ∈ J (X, d) and µ is a p-Ahlfors regular measure on (X, θ)}.
(1.4)

In (1.4) and (1.3) we adopt the convention that inf ∅ = ∞. Ahlfors regular conformal
dimension is a well-studied notion in complex dynamics and hyperbolic groups; see for
example [BK05, BM, CM, HP09, PT, Par]. These notions of conformal dimensions are
variants of the one introduced by Pansu [Pan89] and we refer the reader to [MT10] for
more background and applications.

To compare our results with earlier ones, we recall the notion of doubling and uniformly
perfect metric spaces. A metric space is said to be doubling, if there exists N ∈ N such
that every ball of radius r can be covered by at most N balls of radii r/2. It is easy to
see that the dimA(X, d) < ∞ if and only if (X, d) is doubling. A metric space (X, d)
is said to be uniformly perfect if there exists C > 1 such that whenever B(x, r) 6= X,
we have B(x, r) \ B(x, r/C) 6= ∅. Carrasco’s theorem [Car, Theorem 1.3] states that
for any compact, doubling, uniformly perfect metric space, the Ahlfors regular conformal
dimension is given by

dimARC(X, d) = CE(X, d).

The following lemma characterizes the class of metric spaces for which dimCA(X, d) and
dimARC(X, d) are finite.

Lemma 1.3. Let (X, d) be a compact metric space. Then

(a) dimCA(X, d) is finite if and only if (X, d) is doubling.

(b) dimARC(X, d) is finite if and only if (X, d) is doubling and uniformly perfect. More-
over, If (X, d) is doubling and uniformly perfect, then dimARC(X, d) = dimCA(X, d)
[MT10, Proposition 2.2.6].

By Lemma 1.3, our result in Theorem 1.2 generalizes Carrasco’s theorem [Car, The-
orem 1.3] to doubling metric spaces that are not necessarily uniformly perfect. We refer
to [Kig20, Sha] for expositions to Carrasco’s work.
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One motivation for this work is that conformal Assouad dimension is better behaved
than Ahlfors regular conformal dimension. The above lemma shows that conformal As-
souad dimension is a meaningful quasisymmetry invariant for a larger class of metric
spaces. If (X, d) is a compact metric space and Y ⊂ X, then it is easy to see that

dimCA(Y, d) ≤ dimCA(X, d).

The above inequality is not always true for Ahlfors regular conformal dimension because a
subset of uniformly perfect metric space is not necessarily uniformly perfect. Nevertheless,
if (X, d) is a compact, doubling, uniformly perfect metric space and Y ⊂ X is also
compact, doubling and uniformly perfect, then

dimARC(Y, d) ≤ dimARC(X, d). (1.5)

One way to show (1.5) is to use Lemma 1.3(b) and the analogous inequality for conformal
Assouad dimension. Another more involved approach would be to use [Car, Theorem 1.3]
and careful choices of hyperbolic fillings for X and Y . The direct approach of restricing
an Ahlfors regular metric in J (X, d) to Y does not work because the restriction of an
Ahlfors regular metric on a subset need not be Ahlfors regular. To summarize, conformal
Assouad dimension is better behaved because Ahlfors regularity and uniform perfectness
do not pass to a subspace.

We briefly discuss the result dimCA(X, d) = inf{dimA(X, θ) : θ ∈ Jp(X, d)}. Since
Jp(X, d) ⊂ J (X, d), the upper bound on dimCA(X, d) is obvious but the other inequality
is non-trivial as it is possible that Jp(X, d) 6= J (X, d) as we recall below. Trotsenko
and Väisälä characterize metric spaces for which Jp(X, d) = J (X, d). To state their
characterization, we recall the notion of weakly uniformly perfect spaces. We say that a
metric space is weakly uniformly perfect if there exists C > 1 such that if B(x, r) 6= X for
some x ∈ X, r > 0, then either B(x, r) = {x} or B(x, r) \B(x, r/C) 6= ∅. The Trotsenko-
Väisälä theorem states that a compact metric space (X, d) satisfies Jp(X, d) = J (X, d)
if and only if (X, d) is weakly uniformly perfect [TV, Theorems 4.11 and 6.20].

1.1 Outline of the work

To show the estimate dimCA(X, d) ≤ CE(X, d), we construct a graph which is Gromov
hyperbolic called the hyperbolic filling (see §2.3). A theorem of Bonk and Schramm im-
plies that a quasi-isometric change of metric on the hyperbolic filling induces a power
quasisymmetric change of metric on its boundary. Roughly speaking, a quasi-isometric
change of metric is done using the optimal functions for the combinatorial modulus.
This is done in [Car, Theorems 1.1 and 1.2] where the author introduces hypotheses on
weight functions on the graph that defines a bi-Lipschitz change of metric in the hy-
perbolic filling. However the hypotheses introduced in [Car, Theorem 1.1] implies that
(X, d) is uniformly perfect as pointed in [Sha, Lemma 6.2]. Since the metric spaces we
consider are not necessarily uniformly perfect, we need modify one of the hypothesis so
that it is more suitable for bounding the conformal Assouad dimension (see hypothe-
sis (H4) in Theorem 3.3). The key new tool is a modification of a lemma of Vol’berg
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and Konyagin to construct a p-homogeneous measure on (X, θ), where θ is power qua-
sisymmetric to d and p > CE(X, d) (see Lemma 3.11 and Proposition 3.16). This along
with Theorem 3.1 implies the bound dimCA(X, d) ≤ CE(X, d). Another key distinction
from [Car] is that the metric space is not necessarily uniformly perfect. Therefore by
the Trotsenko-Väisälä theorem, this approach need not construct all possible metrics in
J (X, d). Nevertheless, this approach provides the sharp upper bound and also leads to
dimCA(X, d) = inf{dimA(X, θ) : θ ∈ Jp(X, d)}.

For the other bound CE(X, d) ≤ dimCA(X, d), we use a p-homogeneous measure µ in
(X, θ) and θ ∈ J (X, d) for p > dimCA(X, d) and define an function ρ for the combinatorial
modulus that is similar to [Car, (3.7)]. However some modifications are needed because
[Car] uses the uniform perfectness in an essential way to control ρ. Some of the parameters
and constants in [Car] depend on the constant associated with the uniform perfectness
property. Much of the work is about removing such dependence on uniform perfectness.

2 Hyperbolic filling of a compact metric space

2.1 Gromov hyperbolic spaces and its boundary

Let (Z, d) be a metric space. We recall some basic notions regarding Gromov hyperbolic
spaces and refer the reader to [BH, CDP, GH90, Gro87, Vä05] for a detailed exposition.
Given three points x, y, w ∈ Z, we define the Gromov product of x and y with respect to
the base point w as

(x|y)w =
1

2
(d(x,w) + d(y, w)− d(x, y)).

By the triangle inequality, Gromov product is always non-negative. We say that a metric
space (Z, d) is δ-hyperbolic, if for any four points x, y, z, w ∈ Z, we have

(x|z)w ≥ (x|y)w ∧ (y|z)w − δ.

We say that (Z, d) is hyperbolic (or d is a hyperbolic metric), if (Z, d) is hyperbolic for
some δ ∈ [0,∞). If the above condition is satisfied for a fixed base point w ∈ Z, and
arbitrary x, y, z ∈ Z, then (Z, d) is 2δ-hyperbolic [CDP, Proposition 1.2].

We recall the definition of the boundary of a hyperbolic space. Let (Z, d) be a hy-
perbolic space and let w ∈ Z. A sequence of points (xi)i∈N ⊂ Z is said to converge at
infinity, if

lim
i,j→∞

(xi|xj)w =∞.

The above notion of convergence at infinity does not depend on the choice of the base
point w ∈ Z, because by the triangle inequality |(x|y)w − (x|y)w′| ≤ d(w,w′).

Two sequences (xi)i∈N, (yi)i∈N that converge at infinity are said to be equivalent, if

lim
i→∞

(xi|yi)w =∞.

This defines an equivalence relation among all sequences that converge at infinity [CDP,
§1, Chapter 2]. As before, is easy to check that the notion of equivalent sequences does
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not depend on the choice of the base point w. The boundary ∂Z of (Z, d) is defined as the
set of equivalence classes of sequences converging at infinity under the above equivalence
relation. If there are multiple hyperbolic metrics on the same set Z, to avoid confusion, we
denote the boundary of (Z, d) by ∂(Z, d). The notion of Gromov product can be defined
on the boundary as follows: for all a, b ∈ ∂Z

(a|b)w = sup
{

lim inf
i→∞

(xi|yi)w : (xi)i∈N ∈ a, (yi)i∈N ∈ b
}
.

By [GH90, Remarque 8, Chapitre 7], if (xi)i∈N ∈ a, (yi)i∈N ∈ b, we have

(a|b)w − 2δ ≤ lim inf
i→∞

(xi|yi)w ≤ (a|b)w.

The boundary ∂Z of the hyperbolic space (Z, d) carries a family of metrics. A metric
ρ : ∂Z × ∂Z → [0,∞) on ∂Z is said to be a visual metric with base point w ∈ Z and
visual parameter α ∈ (1,∞) if there exists k1, k2 > 0 such that

k1α
−(a|b)w ≤ ρ(a, b) ≤ k2α

−(a|b)w

If a visual metric with base point w and visual parameter α exists, then it can be chosen
to be

ρα,w(a, b) := inf
n−1∑
i=1

α−(ai|ai+1)w ,

where the infimum is over all finite sequences (ai)
n
i=1 ⊂ ∂Z, n ≥ 2 such that a1 = a, an = b.

Any other visual metric with the same basepoint and visual parameter is bi-Lipschitz
equivalent to ρα,w.

Visual metrics exist on hyperbolic metric spaces as we recall now. For any δ-hyperbolic
space (Z, d), there exists α0 > 1 (α0 depends only on δ) such that if α ∈ (1, α0), then
there exists a visual metric with parameter α [GH90, Chapitre 7], [BoSc, Lemma 6.1].
It is well-known that quasi-isometry between almost geodesic hyperbolic spaces induces
a quasisymmetry on their boundaries (the notion of almost geodesic space is given in
Definition 2.1). Since this plays a central role in our construction of metric, we recall the
relevant definitions and results below.

We say that a map (not necessarily continuous) f : (X1, d1) → (X2, d2) between two
metric spaces is a quasi-isometry if there exists constants A,B > 0 such that

A−1d1(x, y)− A ≤ d2(f(x), f(y)) ≤ Ad1(x, y) + A

for all x, y ∈ X1, and

sup
x2∈X2

d(x2, f(X1)) = sup
x2∈X2

inf
x1∈X1

d(x2, f(x1)) ≤ B.

Definition 2.1. A metric space (Z, d) is k-almost geodesic, if for every x, y ∈ Z and every
t ∈ [0, d(x, y)], there is some z ∈ Z with |d(x, z)− t| ≤ k and |d(y, z)− (d(x, y)− t)| ≤ k.
We say that a metric space is almost geodesic if it is k-almost geodesic for some k ≥ 0.
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Quasi-isometry between hyperbolic spaces induce quasisymmetries on their corre-
sponding boundaries. We recall a result due to Bonk and Schramm below.

Proposition 2.2 ([BoSc, Theorem 6.5 and Proposition 6.3]). Let (Z1, d1) and (Z2, d2) be
two almost geodesic, δ-hyperbolic metric spaces. Let f : (Z1, d1) → (Z2, d2) be a quasi-
isometry.

(a) If (xi)i∈N ⊂ Z1 converges at infinity, then (f(xi))i∈N ⊂ Y converges at infinity. If
(xi)i∈N and (yi)i∈N are equivalent sequences in X converging at infinity, then (f(xi))i∈N
and (f(yi))i∈N are also equivalent.

(b) The map ∂f : ∂Z1 → ∂Z2 given by ∂f ((xi)i∈N) = (f(xi))i∈N is well-defined, and is a
bijection.

(c) Let p1 ∈ Z1 be a base point in Z1, and let f(p1) be a corresponding base point in
Z2. Let ρ1, ρ2 denote visual metrics (with not necessarily the same visual parameter)
on ∂Z1, ∂Z2 with base points p1, f(p1) respectively. Then the induced boundary map
∂f : (∂Z1, ρ1)→ (∂Z2, ρ2) is a power quasisymmetry.

2.2 Geodesic hyperbolic spaces

Let (Z, d) by a geodesic δ-hyperbolic metric space. Recall that (Z, d) is geodesic if for any
x, y ∈ X, there exists a curve γ : [0, d(x, y)] → Z such that γ(0) = x, γ(d(x, y)) = y and
d(γ(s), γ(t)) = |s− t| for all s, t ∈ [0, d(x, y)]. Such a curve is called a geodesic between x
and y. For x, y ∈ Z, we denote by [x, y] a geodesic between x and y. For x, y, z ∈ Z, we
denote by [x, y, z] = [x, y]∪ [y, z]∪ [z, x] a geodesic triangle in Z. Recall that a tripod is a
metric tree with three edges arising from a common central vertex such that each edge a
is isometric to the closed interval [0, l(a)] for some l(a) ≥ 0 called the length of the edge
a. A tripod is determined up to isometry by the length of the three edges. We allow for
the degenerate case where the length of some of the edges could be zero.

Given a geodesic triangle ∆ = [x, y, z], there exists a map f∆ : ∆ → T∆ from ∆ to
a tripod T∆ such that the restriction of f∆ to each side of the triangle is an isometry
[GH90, Proposition 2]. The inscribed triple of a geodesic triangle ∆ is defined to be the
preimages of the ‘central vertex’ of the tripod T∆ under the map f∆ described above.

Unlike a tripod, a geodesic triangle ∆ need not have a canonical center. However,
it has a reasonable notion of approximate center. For K ≥ 0, a point c ∈ Z is a K-
approximate center of a geodesic triangle [x, y, z] if c is at a distance at most K from
each of the three sides, that is, d(c, [x, y]) ∨ d(c, [y, z]) ∨ d(c, [z, x]) ≤ K. The following
proposition concerns a few properties of approximate center.

Proposition 2.3. Let (Z, d) be a geodesic, δ-hyperbolic metric space.

(a) Each point of the inscribed triple of a geodesic triangle is a 4δ-approximate center.

(b) Any two K-approximate centers c and c′ of a geodesic triangle [x, y, z] satisfies
d(c, c′) ≤ 8K.
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(c) If c is a K-approximate center of a geodesic triangle [x, y, z] then

|d(x, c)− (y|z)x| ≤ 4K.

(d) If f : (Z1, d1)→ (Z2, d2) is a quasi-isometry between two geodesic δ-hyperbolic metric
spaces and if c is a K1-approximate center of [x, y, z] then f(c) is a K2-approximate
center of any geodesic triangle [f(x), f(y), f(z)], where K2 depends only on K1, δ and
the constants associated with the quasi-isometry f . In particular,∣∣d2(f(x), f(c))− (f(y)|f(z))f(x)

∣∣ ≤ 4K2.

Proof.

(a) By [GH90, Proposition 21, Chapitre 2] each point of the inscribed triple is a 4δ-
approximate center.

(b,c) Let c denote a K-approximate center of [x, y, z]. Let p1, p2, p3 be the points of the
inscribed triple on [x, y], [y, z], [z, x] respectively. Similarly, let q1, q2, q3 be three points
on [x, y], [y, z], [z, x] respectively such that d(c, qi) ≤ A for all i = 1, 2, 3. This implies
that d(qi, qj) ≤ 2K for all i, j. By the argument in [GH90, Proof of Lemme 20,
Chapitre 2] we have

d(pi, qi) ≤ 3K for all i = 1, 2, 3. (2.1)

Since d(x, p1) = (y|z)x and d(p1, q1) ≤ 3K, we obtain

|d(x, c)− (y|z)x| = |d(x, c)− d(x, p1)| ≤ d(p1, q1) + d(c, q1) ≤ 3K +K = 4K.

This concludes the proof of (c). Similarly, d(c, pi) ≤ d(pi, qi) + d(c, qi) ≤ 4K for all
i = 1, 2, 3. Therefore d(c, c′) ≤ d(c, p1) + d(c′, p1) ≤ 8K, and hence (b) holds.

(d) This is an immediate consequence of the geodesic stability under quasi-isometries
[GH90, Théorème 11, Chapitre 5] and (c).

�

2.3 Construction of hyperbolic filling

In this section, we recall the construction of a hyperbolic filling of a compact metric
space. Let (X, d) be a compact metric space. The construction below is due to A. Bjorn,
J. Bjorn and Shanmugalingam [BBS]. Earlier versions of this construction are due to
Elek, Bourdon and Pajot [Ele, BP].

Let λ, a ∈ (1,∞) be two parameters which we call the horizontal and vertical param-
eter of the hyperbolic filling respectively. We assume that the diameter is normalized
so that diam(X, d) = 1

2
. Let Xn, n ∈ N≥0 be an increasing sequence of maximal a−n-

separated subsets of X. In other words, Xn ⊂ Xm for all n < m, any two distinct points
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inXn have mutual distance at least a−n and any set strictly larger thanXn has two distinct
points whose distance is strictly less than a−n. The vertex set of the graph is S = ∪n≥0Sn,
where Sn = {(x, n) : x ∈ Xn}. Two distinct vertices (x, n), (y,m) ∈ S are joined by an
edge if and only if either n = m and B(x, λa−n) ∩ B(y, λa−m) 6= ∅ or if |n−m| = 1 and
B(x, a−n)∩B(y, a−m) 6= ∅. Let D1 denote the combinatorial (graph) distance on S defined
by the above set of edges. That is D1((x, n), (y,m)) is the minimal number k such that
(x, n) = (x0, n0), (x1, n1), . . . , (xk, nk) = (y,m), where (xi, ni), (xi+1, ni+1) ∈ S is joined
by an edge for all i = 0, 1, . . . , k− 1. It is evident that (S, D1) is 1-almost geodesic metric
space.

We now construct a graph with fewer vertical edges. For each (x, n) ∈ S, we choose
(y, n−1) ∈ Sn such that d(x, y) = minz∈Xn−1 d(x, z). In this case, we say that (y, n−1) is
the parent of (x, n) or equivalently, (x, n) is a child of (y, n−1). Such a choice of y ∈ Xn−1

is not unique but we fix this choice for the remainder of this work. Since Xn−1 is a maximal
a−(n−1) separated subset of X, d(x, y) ≤ a−(n−1). Hence x ∈ B(x, a−n)∩B(y, a−(n−1)) 6= ∅.
In other words every parent and their child is connected by an edge in the graph associated
with (S, D1). We define a new graph whose edges consists of all of the edges between
parent and child and those between (x, n), (y, n) ∈ S where B(x, λa−n) ∩ B(y, λa−n) 6=
∅, x 6= y. The corresponding graph distance is denoted by D2. The set of children of a
vertex v is denoted by

C(v) := {w ∈ S : w is a child of v}. (2.2)

Note that C(v) ⊂ Sn+1 whenever v ∈ Sn.

If (x, n+1) and (y, n+1) share an edge in D2 and if (x0, n) and (y0, n) are their respec-
tive parents, then d(x0, y0) ≤ d(x, y)+d(x, x0)+d(y, y0) < 2a−n+2λa−n−1. Under the as-
sumption λ ≥ 2+2λa−1, we have D2((x, n+1), (y, n+1)) ≤ 1, then D2((x0, n), (y0, n)) ≤ 1
whenever (x0, n), (y0, n) are the parents of (x, n+ 1), (y, n+ 1) respectively. We say that
(x, n) is a descendant of (y, k) if n > k, and there exists (zj, nj) ∈ S for j = 0, . . . , n− k
such that (z0, n0) = (y, k), (zn−k, nn−k) = (x, n), where (zi+1, ni+1) is a child of (zi, ni) for
all i = 0, . . . , n − k − 1. For any n > k ≥ 0 and v ∈ Sk, the set of descendants of v in
generation n is denoted by

Dn(v) = {w ∈ Sn : w is a descendant of v}. (2.3)

The following lemma is an analogue of [Car, Lemma 2.2].

Lemma 2.4. Let λ, a > 1 be horizontal and vertical parameters of the hyperbolic filling
respectively.

(a) If (z, n+ 1) is a child of (x, n), then d(x, z) < a−n. If (y, k) is a descendant of (x, n)
(for some k > n), then

d(x, y) <
a

a− 1
a−n.

(b) If λ ≥ 2 + 2λa−1 and D2((x, n + 1), (y, n + 1)) ≤ 1, then D2((x0, n), (y0, n)) ≤ 1,
where (x0, n), (y0, n) are the parents of (x, n+ 1), (y, n+ 1) respectively. Similarly, if
λ ≥ 2 + 4λa−1 and D2((x, n+ 1), (y, n+ 1)) ≤ 2, then D2((x0, n), (y0, n)) ≤ 1, where
(x0, n), (y0, n) are the parents of (x, n+ 1), (y, n+ 1).
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(c) Let λ ≥ 6. If (x, n+1), (y, n+1) ∈ Sn+1 such that d(x, y) ≤ 4a−n. If (x0, n), (y0, n) ∈
Sn are the parents of (x, n+ 1), (y, n+ 1) respectively, then D2((x0, n), (y0, n)) ≤ 1.

(d) If λ > 1 + a−1, we have D1 ≤ D2 ≤ 2D1.

(e) Let λ > 1 + a−1. Let w ∈ Sn+1 and u, v ∈ Sn be such that D1(u,w) = 1 and
D2(v, w) = 1. Then D2(u, v) ≤ 1.

Proof.

(a) Since Xn is maximal a−n-subset of X, every point z ∈ X satisfies d(z,Xn) < a−n.
This shows the first claim. If (y, k) is a descendant of (x, n) by the first claim and
triangle inequality d(x, y) ≤

∑k
i=n a

−i < a
a−1

a−n.

(b) Since d(x0, y0) ≤ d(x, y) + d(x, x0) + d(y, y0) < 2a−n + 2λa−n−1, we have {x0, y0} ⊂
B(x0, λa

−n) ∩ B(y0, λa
−n) 6= ∅ for any λ such that λ ≥ 2 + 2λa−1. Hence

D2((x0, n), (y0, n)) ≤ 1. The other claim follows from a similar argument.

(c) Since d(x0, y0) ≤ d(x, y) + d(x, x0) + d(y, y0) < 4a−n + a−n + a−n = 6a−n, we
have {x0, y0} ⊂ B(x0, λa

−n) ∩ B(y0, λa
−n) 6= ∅ whenever λ ≥ 6. Therefore

D2((x0, n), (y0, n)) ≤ 1.

(d),(e) Since every edge in the graph corresponding to (S, D2) is contained in the graph
corresponding to (S, D2), we have D2 ≥ D1.

On the other hand, if there is an edge in (S, D1)1 which is not present in (S, D2),
then it must be between some (x, n), (y, n + 1) such that n ∈ N≥0 and that the
parent of (y, n + 1) is (z, n) where z 6= x. In this case d(x, y) ≤ a−n−1 + a−n (since
B(x, a−n) ∩ B(y, a−n−1) 6= ∅). Therefore if λ > 1 + a−1, there would be an edge
between (x, n) and (z, n) in both graphs (since y ∈ B(x, λa−n) ∩ B(z, λa−n)). This
implies that

D1 ≤ D2 ≤ 2D1, whenever λ ≥ 1 + a−1. (2.4)

�

We recall the relevant properties the metric spaces (S, D1) and (S, D2). By the choice
of the diam(X, d), there is an unique point x0 ∈ X0. We choose v0 := (x0, 0) as the base
point of the metric spaces (S, D1) and (S, D2). We denote the Gromov product with
respect to the basepoint v0 in (S, D1) and (S, D2) by (·|·)1, (·|·)2 respectively. The key
point in the following result is that the hyperbolicity constant δ depends only on a and λ
unlike the analogous result in [BP, Car] where δ also depends on the constant associated
with the uniform perfectness property (see [Car, Remark after Proposition 2.1]).

Proposition 2.5. (Cf. [BBS, Lemma 3.3 and Theorem 3.4]) Let (X, d) be a compact
metric space and let a, λ denote the vertical and horizontal parameters respectively of the
hyperbolic filling. Then the hyperbolic filling (S, D1) satisfies the following properties

1Here we abuse notation and use (S, Di) to denote the graph, for i = 1, 2.

10



(a) For any v = (z, n), w = (y,m) ∈ S, we have

a− 1

4λa

(
d(z, y) + a−n + a−m

)
≤ a−(v|w)1 ≤ a5/2

λ− 1

(
d(z, y) + a−n + a−m

)
In particular, if a, λ ∈ [2,∞) and a ≥ λ, then∣∣∣∣(v|w)1 +

log(d(x, y) + a−m + a−n)

log a

∣∣∣∣ ≤ 4.

(b) (S, D1) is δ-hyperbolic, where δ = 2
log

(
8λa7/2

(a−1)(λ−1)

)
log a

. In particular, if a, λ ∈ [2,∞) and
a ≥ λ implies that δ can be chosen to be 15.

Proof.

(a) The first estimate follows from [BBS, Proof of Lemma 3.3]. The second conclusion is
a consequence of the estimate

max

(
log(a5/2/(λ− 1))

log a
,
log
(

4λa
a−1

)
log a

)
≤ 4 whenever a ≥ λ ≥ 2.

(b) The δ-hyperbolicity follows from the proof of [BBS, Theorem 3.4] along with [CDP,
Proposition 1.2]. For the second conclusion, observe that

2
log
(

8λa7/2

(a−1)(λ−1)

)
log a

≤ 2
log(32a5/2)

log a
≤ 15, whenever a ≥ λ ≥ 2.

�

By Proposition 2.5(a), a sequence of vertices ((xi, ni))i∈N ∈ S converges at infin-
ity if and only if limni = ∞ and (xi)i∈N is a convergent sequence in (X, d). Two se-
quences ((xi, ni))i∈N and ((yi,mi))i∈N that converge at infinity are equivalent if and only
if limi→∞ xi = limi→∞ yi and limi→∞ ni = limi→∞mi = ∞. Define the limit at infinity
function l∞ : ∂(S, D1) → X that maps an equivalence class of sequence converging at
infinity to its limit as

l∞(((xi, ni))i∈N) = lim
i→∞

xi. (2.5)

Note that l∞ is well defined and is a bijection. By the first estimate in Proposition 2.5(a),
d is a visual metric on ∂(S, D1) with visual parameter a and base point v0 in the following
sense:

a− 1

4λa
d(x, y) ≤ a−(l−1

∞ (x)|l−1
∞ (y))1 ≤ a5/2

λ− 1
d(x, y) for all x, y ∈ X. (2.6)

We would like to use Proposition 2.3 to estimate Gromov product in the hyperbolic
filling. Since (S, D1) is not a geodesic space, we embed it into a geodesic space by replacing

11



each edge with an isometric copy of the unit interval to obtain a metric space (S̃, D1)

where we view S ⊂ S̃ and D1 on S̃ is an extension of D1 on S. For any x, y ∈ X, let ñ is
the largest integer that satisfies {x, y} ⊂ B(z̃, 2a−ñ) for some (z̃, ñ) ∈ S and define

c(x, y) = {(z̃, ñ) ∈ S : {x, y} ⊂ B(z̃, 2a−ñ)}. (2.7)

We think of c(x, y) as the set of approximate centers of the triangle [v0, l
−1
∞ (x), l−1

∞ (y)],
where l−1

∞ (x), l−1
∞ (y) ∈ ∂(S, D1) and v0 is the unique element of S0. The following lemma

makes this precise by identifying c(x, y) as approximate centers of certain geodesic trian-

gles in S̃.

Lemma 2.6. Let the parameters of the hyperbolic filling satisfy

a ≥ λ ≥ 2, and λ ≥ 1 +
a

a− 1
.

Let (z,m), (w, n) ∈ S such that x ∈ B(z, a−m), y ∈ B(w, a−n) and such that a−m + a−n <
a−2d(x, y). Then any (w, k) ∈ c(x, y) is a K-approximate center for any geodesic triangle

[v0, (z,m), (w, n)] in (S̃, D1), where K = 80.

Proof. Since every point in S̃ is at most distance 1
2

away from a point in S, by replacing

points in S̃ with the corresponding closest points in S, we obtain that (S̃, D1) is (δ + 3)-
hyperbolic whenever (S, D1) is δ-hyperbolic.

Let (z̃, k) ∈ c(x, y). Since {x, y} ⊂ B(z̃, 2a−k), we obtain d(x, y) ≤ 4a−k. Choose
w ∈ X such that (w, k + 1) ∈ Sk+1 and d(x,w) < a−(k+1). By the maximality of k,
we have that y /∈ B(w, 2a−(k+1)) and hence d(x, y) ≥ d(w, y) − d(w, x) > a−(k+1). In
particular,

a−(k+1) < d(x, y) ≤ 4a−k. (2.8)

If a ≥ 2, we have a−(k+1) < d(x, y) ≤ 4a−n ≤ a−k+2, which implies

− 1 ≤ k +
log d(x, y)

log a
≤ 2, whenever a ≥ 2. (2.9)

Since a−m < a−2d(x, y), we have m + log d(x,y)
log a

> 2 which along with (2.9) implies that

m ≥ k. Choose (w, k) such that (z,m) is a descendant of (w, k). By Lemma 2.4(a), we
have d(x,w) ≤ d(x, z)+d(w, z) < a−m+ a

a−1
a−k ≤

(
1 + a

a−1

)
a−k. Therefore if λ ≥ 1+ a

a−1
,

we have x ∈ B(w, λa−k) ∩ B(z̃, λa−k) 6= ∅. Hence (w, k) and (z̃, k) are either equal or
horizontal neighbors.

Note that |d(x, y)− d(z, w)| ≤ a−m + a−n < a−2d(x, y), which implies

(1− a−2)d(x, y) ≤ d(z, w) + a−m + a−n ≤ (1 + 2a−2)d(x, y).

Therefore if a ≥ λ ≥ 2, we have∣∣∣∣log(d(x, y))

log a
− log(d(z, w) + a−m + a−n)

log a

∣∣∣∣ ≤ 1.
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Combining with (2.9) and Proposition 2.5(a), we obtain that

|((z,m)|(w, n))1 − k| ≤ 7.

This along with Proposition 2.3(a) and the fact that (z̃, k) is a neighbor of (w, k), we
obtain that (z̃, k) is K-approximate center of the geodesic triangle [v0, (z,m), (w, n)],
where K = 1 + 7 + 4(15 + 3) = 80. �

Remark 2.7. The assumption
a ≥ λ ≥ 6 (2.10)

implies the estimates assumed on a, λ in Lemma 2.4, Proposition 2.5, and Lemma 2.6 hold.
For this reason we assume (2.10) for much of this work. The analogous estimate [Car,
(2.8)] is more complicated because it involves the constant in the definition of uniform
perfectness.

3 Construction of metric and homogeneous measure

In this section, we construct metric in the conformal gauge and a homogeneous measure
using a weight function on the hyperbolic filling S as constructed in §2.3. A weight on a
filling S is a function ρ : S → (0,∞). We recall the definition of homogeneous measure and
its relevance to Assouad dimension in §3.1. We then introduce and recall some hypothesis
on a weight function on the hyperbolic filling that provides upper bound on dimCA(X, d)
in §3.2.

3.1 Vol’berg-Konyagin theorem

Our approach to obtain upper and lower bounds on the conformal Assouad dimension
(dimCA(X, d) ≤ CE(X, d) and dimCA(X, d) ≥ CE(X, d)) relies on a theorem of Vol’berg
and Konyagin that we recall below in Theorem 3.1. This result clarifies the relationship
between Assouad dimension and doubling measures. A non-zero Borel measure µ on a
metric space (X, d) is said to be doubling if there exists CD > 1 such that

µ(B(x, 2r)) ≤ CDµ(B(x, r)) for all x ∈ X, r > 0,

where B(x, r) = {y ∈ X : d(x, y) < r} denotes the open ball of radius r centered at x. A
non-zero Borel measure is said to be q-homogeneous measure if there exists C > 1 such
that

µ(B(x,R)) ≤ C

(
R

r

)q
µ(B(x, r)), for all x ∈ X, 0 < r ≤ R.

It is evident that a measure is doubling if and only if it is q-homogeneous for some
q ∈ (0,∞). The fundamental relationship between Asssouad dimension and doubling
measures is given by the following theorem of Vol’berg and Konyagin [VK].

Theorem 3.1. [VK, Theorem 1] The Assouad dimension of compact metric space (X, d)
is given by

dimA(X, d) = inf{q > 0 : there exists a q-homogeneous measure on (X, d)}.
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3.2 Weights on the filling and Carrasco-type hypotheses

Let π1 : S → X, π2 : S → N≥0 denote the projection maps such that v = (π1(v), π2(v))
for any v ∈ S. We say that an edge between two vertices v and w is horizontal if
π2(v) = π2(w). For a vertex v ∈ S, by Bv we denote the metric ball B(π1(v), a−π2(v)).
Given a vertex v ∈ S, we define the genealogy g(v) as a sequence of vertices (v0, v1, . . . , vk)
where vk = v and vi is the parent of vi+1 for all i = 0, . . . , k − 1 and v0 is the unique
vertex in S0. Given a function ρ : S → (0,∞), we define π : S → (0,∞) as

π(v) =
∏

w∈g(v)

ρ(w). (3.1)

A path γ in (S, D2) is a sequence of vertices γ = (w1, . . . , wn) where there is an edge
between wi and wi+1 (that is, D2(wi, wi+1) = 1) for each i = 1, . . . , n − 1. The ρ-length
of a path γ is defined by

Lρ(γ) =
∑
v∈γ

π(v). (3.2)

The following two families of paths will play an important role in this work. A path is
said to be horizontal if it only consists of horizontal edges. Given x, y ∈ X and n ∈ N≥0,
we define

Γn(x, y) =

{
γ = (v1, . . . , vk)

∣∣∣∣∣ γ is a path in (S, D2), π2(v1) = π2(vk) = n,
and x ∈ Bv1 , y ∈ Bvk , k ∈ N

}
. (3.3)

For a vertex v ∈ Sk, we define

Γk(v) = inf

{
γ = (v1, v2, . . . , vn)

∣∣∣∣∣ γ is a horizontal path with π2(vi) = k + 1 for all i,
n ∈ N, π1(v1) ∈ Bv, π1(vn) /∈ 2 ·Bv

}
.

(3.4)
For x, y ∈ X, we define

π(c(x, y)) = max{π(w) : w ∈ c(x, y)}, (3.5)

where c(x, y) is as defined in Lemma 2.6. We recall the Carrasco-type conditions imposed
on the weight function ρ : S → (0, 1).

Assumption 3.2. A weight function ρ : S → (0, 1) may satisfy some of the following
hypotheses:

(H1) There exist 0 < η− ≤ η+ < 1 so that η− ≤ ρ(v) ≤ η+ for all v ∈ S.

(H2) There exists a constant K0 ≥ 1 such that for all v, w ∈ S that share a horizontal
edge, we have

π(v) ≤ K0π(w),

where π is as defined in (3.1).
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(H3) There exists a constant K1 ≥ 1 such that for any pair of points x, y ∈ X, there
exists n0 ≥ 1 such that if n ≥ n0 and γ is a path in Γn(x, y), then

Lρ(γ) ≥ K−1
1 π(c(x, y)),

where Γn(x, y), Lρ, π(c(x, y)) are as defined in (3.3), (3.2), and (3.5) respectively.

(H4) There exists p > 0 such that for all v ∈ Sm and n > m, we have∑
w∈Dn(v)

π(w)p ≤ π(v)p,

where Dn(v) denotes the descendants of v in Sn. Clearly, it suffices to impose the
above condition only for n = m+ 1.

(H̃4) There exists C > 1, p > 0 such that for all v ∈ Sm, and n > m, we have

C−1π(v)p ≤
∑

w∈Dn(v)

π(w)p ≤ Cπ(v)p,

where Dn(v) denotes the descendants of v in Sn.

The main results of this section are Theorems 3.3 and 3.4 which provide an upper
bound on dimCA(X, d) under certain assumptions on the weight function on a filling.
Theorem 3.3 is an analogue of [Car, Theorem 1.1] but the hypothesis (H4) is different

from that of [Car, Theorem 1.1] where the hypothesis (H̃4) was used instead. As explained

in the introduction, [Sha, Lemma 6.2] implies that (H1) along with (H̃4) can hold only on
a uniformly perfect metric space. Since we consider metric spaces that are not necessarily
uniformly perfect, we need to modify (H̃4) to (H4) as above. This hypothesis plays a key
role in the upper bound on Assouad dimension. Another distinction from [Car] is that the
weights can be used to construct essentially all metrics in J (X, d). Since our construction
of metric relies on Proposition 2.2(c), we can only construct metrics in Jp(X, d) and hence
we cannot obtain such a result. The following theorem is a counterpart of [Car, Theorem
1.1].

Theorem 3.3. Let (X, d) be a compact doubling metric space and let S be a hyperbolic
filling with vertical and horizontal parameters a, λ such that a ≥ λ ≥ 6. Let ρ : S → (0, 1)
be a weight function satisfying the hypothesis (H1), (H2), (H3), and (H4). Then there
exists Θρ ∈ Jp(X, d) such that dimA(X,Θρ) ≤ p.

The following is an analogue of [Car, Theorem 1.2]. The conclusion of Theorem 3.4
is the same as that of Theorem 3.3 but the hypotheses (H1), (H2), (H3), and (H4) are
replaced by simpler hypotheses (S1) and (S2). The hypotheses (S1) and (S2) below are
identical to [Car, Theorem 1.2] but in the conclusion we bound dimCA instead of dimARC.

Theorem 3.4. Let (X, d) be a compact doubling metric space and let S denote a hyperbolic
filling with vertical and horizontal parameters a, λ respectively such that a ≥ λ ≥ 6. Let
p > 0. There exists η0 ∈ (0, 1) which depends only on p, λ and the doubling constant of
(X, d) (but not on the vertical parameter a) such that if there exists a function σ : S →
[0,∞) that satisfies:
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(S1) for all v ∈ Sk and k ≥ 0, if γ ∈ Γk(v), then∑
w∈γ

σ(v) ≥ 1,

where Γk is as defined in (3.4), and

(S2) for all k ≥ 0 and all v ∈ Sk, we have∑
w∈C(v)

σ(v)p ≤ η0,

then there exists Θ ∈ J (X, d) such that dimA(X,Θ) ≤ p and Θ ∈ Jp(X, d). In particular,
dimA(X, d) ≤ inf{dimA(X, θ) : θ ∈ Jp(X, d)} ≤ p.

3.3 Construction of metric using weights on the filling

In this subsection, given a weight function which satisfies the hypotheses (H1), (H2), (H3),
we construct a metric Θρ ∈ Jp(X, d) (Corollary 3.7). The main idea is to use weight ρ to
induce a quasi-isometric change of metric on S (Lemma 3.5(a)) which in turn induces a
power quasisymmetric change of metric on its boundary by Proposition 2.2(c). Since the
boundary of S can be identified with (X, d) by Proposition 2.5(c), we therefore obtain a
metric Θρ ∈ Jp(X, d). We remark that the hypothesis (H4) will not play any role in this
subsection but will play a central role in the next one.

The weight function ρ which satisfies the hypotheses (H1)-(H3) induces a metric Dρ

on S. We set the length of an edge e = (v, w) as `ρ(e), where

`ρ(e) =

{
2 max{− log η−, (− log η+)−1, logK0} if e is horizontal,

log 1
ρ(v)

if w is the parent of v,

where η−, η+, K0 are as defined in (H1) and (H2). This defines a metric

Dρ(v, w) = inf
γ

∑
e∈γ

`ρ(e), (3.6)

where γ varies over all paths in the graph (S, D2) from v to w and e varies over all edges
in γ. By replacing each edge e with an isometric copy of the interval [0, `ρ(e)], we define

a geodesic metric space (S̃, Dρ) such that S ⊂ S̃ and the restriction of Dρ on S̃ coincides
with that of S.

Lemma 3.5. Let (X, d) and S be as in the statement of Theorem 3.3. Let ρ : S → (0,∞)
which satisfies hypotheses (H1) and (H2). Let Dρ denote the metric defined in (3.6).

(a) (S, Dρ) is approximately geodesic. The identity map Id : (S, D1) → (S, Dρ) is a
quasi-isometry.
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(b) Any path of the form ((xi, ni))1≤i≤k such that (xi, ni) is the parent of (xi+1, ni+1) for
all i = 1, . . . , k − 1 defines a shortest path in the Dρ metric and hence

Dρ((x1, n1), (xk, nk)) =

∣∣∣∣log
1

π((x1, n1))
− log

1

π((xk, nk))

∣∣∣∣.
(c) A sequence of vertices converges at infinity in (S, D1) if and only if it converges at

infinity (S, Dρ). Two sequences that converge at infinity are equivalent in (S, D1)
if and only if they are equivalent in (S, Dρ). In particular, the identity map is a
well-defined bijection between ∂(S, D1) and ∂(S, Dρ). Therefore the limit at infinity
map l∞ : ∂(S, D1) → X defined in (2.5) is also well-defined as l∞ : ∂(S, Dρ) → X.
Furthermore, there exists C > 1 such that the Gromov product satisfies

C−1Cπ(c(x, y)) ≤ e−(l−1
∞ (x)|l−1

∞ (y))ρ ≤ Cπ(c(x, y)) for all x, y ∈ X,

where (·|·)ρ is the Gromov product on (S, Dρ) with base point v0 ∈ S0.

(d) There exists C > 0 such that the following holds: for any pair of distinct points x, y ∈
X, there exists n0 such that whenever n ≥ n0 and u, v ∈ Sn such that x ∈ Bu, y ∈ Bv,
there exists a path γ = (wi)i=0,...,k in the graph (S, D2) such that Lρ(γ) ≤ Cπ(c(x, y)).

Proof.

(a) It is easy to check that (S, Dρ) is 2 max{− log η−, (− log η+)−1, logK0}-approximately
geodesic, since the horizontal edges are the longest edges. The fact that the identity
map is a quasi-isometry is because there exist constants C1, C2 such that C1 ≤ `ρ(e) ≤
C2 for all edges e. This along with Lemma 2.4(d) implies that C1D1 ≤ C1D2 ≤ Dρ ≤
C2D2 ≤ 2C2D1.

(b) This follows from the same argument as [Car, Proof of Lemma 2.3] which uses Lemma
2.4(b).

(c) The first three claims follow from Proposition 2.2. Let (vn)n∈N, (wn)n∈N be two se-
quences of vertices such that x ∈ Bvn , y ∈ Bwn , vn ∈ Sn, wn ∈ Sn for all n ∈ N. By
Lemma 2.6, every vertex in c(x, y) is a 80-approximate center for the geodesic triangle

[v0, vn, wn] (in (S̃, D1)) for all large enough n. By (a) and Proposition 2.3(d), every
vertex in c(x, y) is a K ′-approximate center of the geodesic triangle [v0, vn, wn] (in

(S̃, Dρ)) for some K ′ > 0. By Proposition 2.3(d), we obtain the desired estimate.

(d) Let x, y ∈ X and u, v ∈ Sn be as in the statement of the lemma. We choose n0 be
the integer such that c(x, y) ⊂ Sn0 . Let ũ, ṽ ∈ Sn0 be the vertices such that u, v are
descendants of ũ, ṽ respectively. Let c̃ ∈ c(x, y). As shown in the proof of Lemma 2.6,
either ũ (resp. ṽ) is equal to c̃ or is a horizontal neighbor of ũ (resp. ṽ). Therefore
by (H2), π(ũ)∨ π(ṽ) ≤ K0π(c(x, y)). We now construct the desired path γ from u to
v as follows. We join u to ũ and ṽ to v using the geneology. We can connect ũ to ṽ
using c̃ if necessary. By (H1) and (H2), the length Lρ(γ) of γ is bounded by

Lρ(γ) ≤ π(c(x, y))

(
1 +

2K0

1− η+

)
.
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The following proposition provides a bound on visual parameter on ∂(S, Dρ) and relies
crucially on (H3). This construction of metric is slightly different from that of [Car] and
[Sha, Theorem 5.1].

Proposition 3.6 (Visual parameter control). Let (X, d) and S be as in the statement of
Theorem 3.3. Let ρ : S → (0,∞) which satisfies hypotheses (H1), (H2), and (H3). Then
there exists a visual metric θρ on ∂(S, Dρ) with base point v0 ∈ S0 with visual parameter
e, where Dρ is as defined in (3.6). There exists C1 > 1 such that the metric θρ satisfies

C−1
1 π(c(x, y)) ≤ θρ(l

−1
∞ (x), l−1

∞ (y)) ≤ π(c(x, y)) for all x, y ∈ X.

Furthermore, the map p : (∂(S, Dρ), θρ)→ (X, d) is a power quasisymmetry.

Proof. We define the desired metric θρ as

θρ(l
−1
∞ (x), l−1

∞ (y)) = inf

{
k−1∑
i=0

π(c(xi, xi+1)) : k ∈ N, x0 = x, xk = y, xi ∈ X for all i

}
.

Clearly, θρ is non-negative, satisfies the triangle inequality and θρ(l
−1
∞ (x), l−1

∞ (y)) ≤
π(c(x, y)) for all x, y ∈ X. It suffices to show

θρ(l
−1
∞ (x), l−1

∞ (y)) & π(c(x, y))

To this end consider a sequence x0, . . . , xk such that x0 = x, xk = y. Without loss of
generality, we may assume that xi 6= xi+1 for all i = 0, . . . , k − 1. We choose n large
enough so that we can apply Lemma 3.5(d) to each pair xi, xi+1, i = 0, . . . , k− 1. Choose
vi ∈ Sn such that xi ∈ Bvi for all i = 0, . . . , k. By concatenating all points obtained by
applying Lemma 3.5(d) to each pair xi, xi+1, we obtain a path γ ∈ Γn(x, y) such that

Lρ(γ) ≤ C
k−1∑
i=0

π(c(xi, xi+1)),

where C is the constant from Lemma 3.5(d). Combining the above estimate with (H3),
we obtain

(K1C)−1π(c(x, y)) ≤ θρ(l
−1
∞ (x), l−1

∞ (y)) ≤ π(c(x, y)), (3.7)

where K1 is the constant in (H3).

By Proposition 2.5(c), the map p : (∂(S, D1), θ1)→ (X, d) is a bi-Lipschitz map where
θ1 is a visual metric on ∂(S, D1) with base point v0 ∈ S0 and visual parameter a. Since the
identity map Id : (S, Dρ) → (S, D1) is a quasi-isometry by Lemma 3.5(a), the induced
boundary map (as defined in Proposition 2.2(b)) ∂ Id : (∂(S, Dρ), θρ) → (∂(S, D1), θ1)
is a power quasisymmetry by Proposition 2.2(c). Composing this power quasisymmetry
∂ Id : (∂(S, Dρ), θρ)→ (∂(S, D1), θ1) with the bi-Lipschitz map p : (∂(S, D1), θ1)→ (X, d)
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yields the desired conclusion that p : (∂(S, Dρ), θρ) → (X, d) is a power quasisymmetry.
�

Consider the metric Θρ : X ×X → [0,∞) defined by

Θρ(x, y) := θρ(l
−1
∞ (x), l−1

∞ (y)). (3.8)

where θρ is the visual metric from Proposition 3.6. The following is an immediate corollary
of Proposition 3.6.

Corollary 3.7. Let (X, d) and S be as in the statement of Theorem 3.3. Let ρ : S →
(0,∞) which satisfies hypotheses (H1), (H2), and (H3). Then the metric Θρ defined in
(3.8) satisfies Θρ ∈ Jp(X, d).

The following lemma provides a sequence in l−1
∞ (x) ∈ ∂(S, D2) with desirable properties

and is useful for approximating balls centered at x ∈ X in different metrics.

Lemma 3.8. Let (X, d) be a compact doubling metric space and let (S, D2) denote the
corresponding hyperbolic filling with vertical and horizontal parameters a, λ respectively
such that a ≥ λ ≥ 6. For any x ∈ X, there exists a sequence of vertices vn ∈ Sn, n ≥ 0
such that vn is the parent of vn+1 and d(x, π1(vn)) ≤ 1

1−a−1a
−n for all n ∈ N≥0.

Proof. For each n, we choose wn ∈ Sn be such that d(wn, x) < a−n (this is possible since
Xn is a maximal a−n-separated subset). Consider the sequence of genealogies g(wn) for
each n ∈ N≥0. By a diagonal argument the sequence of genealogies g(wn) converge along
a subsequence to yield the a sequence vn ∈ Sn such that vn is the parent of vn+1 for all n ∈
N≥0. If vn ∈ Sn is in the genealogy of wk, k > n, we have d(x, π1(vn)) < a−k +

∑k
i=n a

−k.
Letting k →∞ along a subsequence yields the desired bound d(x, π1(vn)) ≤ 1

1−a−1a
−n. �

The following lemma provides an approximation of balls in (X,Θρ) using the balls in
(X, d). In the following lemma, we use the notation BΘ(·, ·), Bd(·, ·) to denote the balls
in the metrics Θρ, d respectively.

Lemma 3.9. Let (X, d) and S be as in the statement of Theorem 3.3. Let ρ : S → (0,∞)
which satisfies hypotheses (H1), (H2), and (H3). Let Θρ ∈ Jp(X, d) be as defined in (3.8)
and let K0 denote the constant in (H2). Let L > 1 such that

1

L
π(c(x, y)) ≤ Θρ(x, y) ≤ π(c(x, y)) for all x, y ∈ X. (3.9)

For any x ∈ X, let (vn)n∈N≥0
denote a sequence such that vn ∈ Sn for all n ∈ N≥0 as

given in Lemma 3.8. Then

Bd(π1(vk), 2a
−k) ⊂ BΘ(x, r), whenever vk satisfies π(vk) < K−1

0 r, (3.10)

and
BΘ(x, r) ⊂ Bd(π1(vk), 2(λ+ 2)a−k), (3.11)

whenever k ∈ N is such that π(vk) ≤ K0Lr and π(vk−1) > K0Lr.
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Proof. First, we show (3.10). Let k ∈ N≥0 be such that π(vk) < K−1
0 r and let y ∈

Bd(π1(vk), 2a
−k). Let (z, l) ∈ c(x, y). Since {x, y} ⊂ Bd(π1(vk), 2a

−k), we have l ≤ k.
Note that D2((z, l), vl) ≤ 1, since d(π1(vl), x) ≤ d(π1(vl), π1(vk)) + d(π1(vk), x) ≤ (1 −
a−1)−1a−l + (1 − a−1)−1a−k ≤ 2(1− a−1)−1a−l < λa−l and x ∈ B(z, 2a−1) ⊂ B(z, λa−l).
This along with (H2) implies that

π(c(x, y)) ≤ K0π(vl) ≤ K0π(vk) < r.

This estimate along with (3.9) implies (3.10).

Next, we show (3.11). Let k ∈ N be such that π(vk) ≤ K0Lr and π(vk−1) > K0Lr and
let y ∈ BΘ(x, r). By (3.9), π(c(x, y)) ≤ Lr. Let (z, l) ∈ c(x, y). Note thatD2(vl, (z, l)) ≤ 1
which along with (H2) implies that

π(vl) ≤ K0π(c(x, y)) ≤ K0Lr.

The choice of k implies that l ≥ k. Hence by Lemma 3.8

d(π1(vk), y) ≤ d(π1(vk), π1(vl)) + d(π1(vl), z) + d(z, y)

< (1− a−1)−1a−k + 2λa−l + 2a−l (since D2(vl, (z, l)) ≤ 1 and (z, l) ∈ c(x, y))

≤
(
2 + (1− a−1)−1 + 2λ

)
a−k < 2(2 + λ)a−k (since k ≥ l). (3.12)

This completes the proof of (3.11). � .

3.4 Construction of homogeneous measures using weights

Next, we need to control the Assouad dimension of (X,Θρ), where Θρ ∈ Jp(X, d) is as
given in Corollary 3.7. To this end, we construct a p-homogeneous measure on (X,Θρ)
using hypothesis (H4). This along with Theorem 3.1 implies an upper bound on the
Assouad dimension dimA(X,Θρ) ≤ p. To this end, we construct a doubling measure on
X using the weight function ρ : S → (0,∞). The idea is to construct a measure on X
as a limit of discrete measures on Sk as k →∞. To this end, we introduce the following
notions.

Definition 3.10. Let k ∈ N, p ∈ (0,∞), C ∈ (1,∞) and f0 : Sk → (0,∞), f1 : Sk+1 →
(0,∞). Let π : S → (0,∞) be a weight.

(a) We say that f0 : Sk → (0,∞) is (C, π)-balanced if f0(u)
π(u)p

≤ C2 f0(v)
π(v)p

for all vertices

u, v ∈ Sk with D2(u, v) = 1.

(b) A function f0 : Sk → (0,∞) is (C, π)-unbalanced on e = {u, v} if either f0(u)
π(u)p

> C2 f0(v)
π(v)p

or f0(v)
π(v)p

> C2 f0(u)
π(u)p

. Similarly, we say that a function f0 : Sk → (0,∞) is (C, π)-balanced

on e = {u, v} if C−2 f0(v)
π(v)p

≤ f0(u)
π(u)p

≤ C2 f0(v)
π(v)p

.
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(c) We say that the pair (f0, f1) is (C, π)-compatible if for all points u ∈ Sk and v ∈ Sk+1

such that u is the parent of v, we have

f0(u)

π(u)p
≤ f1(v)

π(v)p
≤ C

f0(u)

π(u)p
. (3.13)

We remark that the notions of balanced and compatibility depend only on the hori-
zontal and vertical edges of (S, D2) respectively.

Given a horizontal edge e = {u, v} in Sk, we define the (C, π)-balancing operator
Be
k : (0,∞)Sk → (0,∞)Sk as follows. If f0 is (C, π)-balanced on e, we set Be

k(f0) ≡ f0.

Otherwise, if f0(u)
π(u)p

> C2 f0(v)
π(v)p

we set

(Be
k(f0))(w) =


f0(w) if w /∈ {u, v},
f0(u)− α1 if w = u,

f0(v) + α1 if w = v,

where α1 is given by

α1

(
C2

π(v)p
+

1

π(u)p

)
=
f0(u)

π(u)p
− C2 f0(v)

π(v)p
,

so that
(Bek(f0))(u)

π(u)p
= C2 (Bek(f0))(v)

π(v)p
. The case f0(v)

π(v)p
> C2 f0(u)

π(u)p
is similar to f0(u)

π(u)p
> C2 f0(v)

π(v)p
.

The terminology is due to the fact that Be
k(f0) is (C, π)-balanced on e for all f ∈ (0,∞)Sk .

We need the following modification of a lemma of Vol’berg and Konyagin [VK, Lemma,
p. 631] which plays a key role in the construction of doubling measures.

Lemma 3.11. Let (X, d) and S be as in the statement of Theorem 3.3. Let ρ : S → (0,∞)
be function that satisfies hypotheses (H1) and (H4). Let C ≥ η−p− , where the constants
η−, p are as given in the hypotheses (H1) and (H4). Let k ∈ N≥0, and let µk be a probability
mass function on Sk such that µk is (C, π)-balanced. Then there exists a probability mass
function µk+1 on Sk+1 such that the following hold.

(1) The pair (µk, µk+1) is (C, π)-compatible.

(2) The function µk+1 is (C, π)-balanced.

(3) The construction of the measure µk+1 from the measure µk can be regarded as the
transfer of masses from the points of Xk to those of Xk+1, with no mass trans-
ferred over a distance greater than (1 + 2λa−1)a−k. More precisely, there is a prob-
ability measure µk,k+1 on X × X which is a coupling of the probability measures
µ̃k :=

∑
u∈Sk µk(u)δπ1(u), µ̃k+1 :=

∑
v∈Sk+1

µk+1(v)δπ1(v) such that

µk,k+1

(
{(x1, x2) ∈ X ×X : d(x1, x2) ≥ (1 + 2λa−1)a−k}

)
= 0,

where δx denotes the Dirac measure at x ∈ X. Here by a coupling we mean the
projection maps from X ×X to X on the first and second component pushes forward
the measure µk,k+1 to µ̃k and µ̃k+1 respectively.
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The proof of Lemma 3.11 is done in two steps. First is an ‘averaging’ step where we
construct a measure on Sk+1 by distributing the mass µk(u) of every vertex u ∈ Sk to its
children so that the mass received by each child v is proportional to π(v)p. At end of this
step, we obtain a measure which satisfies the compatibility condition but not necessarily
(C, π)-balanced. In the second ‘balancing’ step, we ensure that the measure is (C, π)-
balanced by a repeated local transfer of mass along edges in Sk+1 using the balancing
operators Be

k+1. By a local transfer we mean that the mass is transferred from a vertex
to its neighbor. The next two lemmas show useful properties of the balancing operators.
The first one shows that the compatibility condition is preserved by balancing operators.

Lemma 3.12. Let (X, d) and S be as in the statement of Theorem 3.3. Let ρ : S → (0,∞)
be function that satisfies hypotheses (H1) and (H4). Let µk be a probability mass function
on Sk that is (C, π)-balanced for some C > 1. Let f0 : Sk+1 → (0, 1] be a probability
mass function on Sk+1 such that (µk, f0) is (C, π)-compatible. Let e = {w1, w

′
1} be an

edge in Sk+1 such that f0 is (C, π)-unbalanced on e. Then the pair (µk, B
e
k+1(f0)) is also

(C, π)-compatible.

Proof. Without loss of generality, we assume that f0(w1)
π(w1)p

> C2 f0(w′1)

π(w′1)p
. Let v1 and v′1 be

parents of w1, w
′
1 respectively and let f1 := Be

k+1(f0). By construction, we have

f1(w1) < f0(w1), f1(w′1) > f0(w′1). (3.14)

Therefore by the (C, π)-compatibility of (µk, f0) and (3.14), we have

f1(w1)

π(w1)p
≤ C

µk(v1)

π(v1)p
,

f1(w′1)

π(w′1)p
≥ µk(v

′
1)

π(v′1)p
.

Therefore it suffices to verify that

f1(w1)

π(w1)p
≥ µk(v1)

π(v1)p
,

f1(w′1)

π(w′1)p
≤ C

µk(v
′
1)

π(v′1)p
. (3.15)

Suppose the first inequality in (3.15) fails to be true, then by construction, (3.14) and the
(C, π)-compatibility of (µk, f0), we have

µk(v1)

π(v1)p
>
f1(w1)

π(w1)p
= C2 f1(w′1)

π(w′1)p
> C2 f0(w′1)

π(w′1)p
≥ C2µk(v

′
1)

π(v′1)p
, (3.16)

which implies µk(v1)
π(v1)p

> C2 µk(v′1)

π(v′1)p
. However, Lemma 2.4(b) implies that D2(v1, v

′
1) ≤ 1 and

therefore the above estimate contradicts the assumption that µk is (C, π)-balanced. This
proves the first inequality in (3.15). The proof of the second inequality in (3.15) is similar.

Indeed, assume to the contrary that
f1(w′1)

π(w′1)p
> C

µk(v′1)

π(v′1)p
; then we have

µk(v1)

π(v1)p
≥ C−1 f0(w1)

π(w1)p
> C−1 f1(w1)

π(w1)p
= C

f1(w′1)

π(w′1)p
> C2µk(v

′
1)

π(v′1)p
, (3.17)
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which again implies µk(v1)
π(v1)p

> C2 µk(v′1)

π(v′1)p
, a contradiction to the assumption that µk is (C, π)-

balanced. In particular (µk, B
e
k+1(f0)) is (C, π)-balanced. �

The next property is that a balancing operator cannot create unbalanced edges. More
precisely, we have the following lemma.

Lemma 3.13. Let (X, d) and S be as in the statement of Theorem 3.3. Let ρ : S → (0,∞)
be function that satisfies hypotheses (H1) and (H4). Let µk be a probability mass function
on Sk that is (C, π)-balanced for some C > 1. Let f0 : Sk+1 → (0, 1] be a probability mass
function on Sk+1 such that (µk, f0) is (C, π)-compatible. Let e = {w1, w

′
1} be an edge in

Sk+1 such that f0 is (C, π)-unbalanced on e. If an edge e′ = {w,w′} on Sk+1 is such that
f0 is (C, π)-balanced on e′, then Be

k+1(f0) is also (C, π)-balanced on e′.

Proof. Without loss of generality, we assume that f0(w1)
π(w1)p

> C2 f0(w′1)

π(w′1)p
. Let e′ = {w,w′}

be such that f0 is (C, π)-balanced on e′. Let f1 := Be
k+1(f0). By our assumption f0(w1)

π(w1)p
>

C2 f0(w′1)

π(w′1)
, we have {w,w′} 6= {w1, w

′
1}. If {w,w′} ∩ {w1, w

′
1} = ∅, then there is nothing to

prove since f0 and f1 agree on {w,w′}.
The only remaining case to consider is if {w,w′} ∩ {w1, w

′
1} contains exactly one

element. Next, we consider the case {w1, w
′
1} ∩ {w,w′} = {w1} where w1 = w. Since

f0(w)/π(w)p > C2f0(w′1)/π(w′1)p,

f1(w)

π(w)p
=
f1(w1)

π(w1)p
= C2 f1(w′1)

π(w1)p
, f1(w) < f0(w), f1(w′) = f0(w′). (3.18)

We need to show that

f1(w′)

π(w′)p
≤ C2 f1(w)

π(w)p
,

f1(w)

π(w)p
≤ C2 f1(w′)

π(w′)p
. (3.19)

Therefore by (3.18), only the first inequality in (3.19) can fail for f1. Suppose that this
happens, that is

f1(w′)

π(w′)p
> C2 f1(w)

π(w)p
. (3.20)

Let v′, v′1 ∈ Sk be parents of w′, w′1 respectively. By Lemma 3.12, (µk, f1) is (C, π)-
compatible. Then by the (C, π)-compatibility of (µk, f1), (3.20), and (3.18), we obtain

µk(v
′)

π(v′)p
≥ C−1 f1(w′)

π(w′)p
(3.20)
> C

f1(w)

π(w)p
(3.18)
= C3 f1(w′1)

π(w′1)p
≥ C3µk(v

′
1)

π(v′1)p
> C2µk(v

′
1)

π(v′1)p
, (3.21)

which contradicts the assumption that µk is (C, π)-balanced (since D2(v′, v′1) ≤ 1 by
Lemma 2.4(b) and λ ≥ 2 + 4λa−1). The remaining case {w1, w

′
1} ∩ {w,w′} = {w′1} is

analyzed similarly and therefore the assertion that Be
k+1(f0) is also (C, π)-balanced on e′

is proved. �

The following iterative construction uses Lemmas 3.12 and 3.13 to obtain a balanced
and compatible function from a compatible function.
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Lemma 3.14. Let (X, d) and S be as in the statement of Theorem 3.3. Let ρ : S → (0,∞)
be function that satisfies hypotheses (H1) and (H4). Let µk be a probability mass function
on Sk that is (C, π)-balanced for some C > 1. Let f0 : Sk+1 → (0, 1] be a probability mass
function on Sk+1 such that (µk, f0) is (C, π)-compatible. Let pi = {vi, v′i}, i = 1, . . . , T be
an enumeration of all edges in Sk+1. We inductively define

fi := Bpi
k+1(fi−1) ∈ (0, 1]Sk+1 for all i = 1, . . . , T . (3.22)

Then, fi, i = 0, . . . , T satisfy the following properties.

(a) Each fi is a probability mass function such that (µk, fi) is (C, π)-compatible for all
i = 0, 1, . . . , T .

(b) The probability mass function fT is (C, π)-balanced.

(c) There are no pairs of edges pl = {w1, w2}, pn = {w2, w3}, l, n ∈ Z∩ [1, T ], l < n, such
that mass is transferred from w1 to w2 in the transition from fl−1 to fl and then mass
is transferred from w2 to w3 in the transition from fn−1 to fn.

Proof.

(a) Since the balancing operators preserve the sum, each fi is a probability mass function.
By Lemma 3.12, (µk, fi) is (C, π)-compatible.

(b) This is an immediate consequence of Lemma 3.13, since fT is (C, π)-balanced on every
edge in Sk+1.

(c) Assume the opposite; that is, there are a mass transfer from w1 to w2 (in the transition
from fl−1 to fl) followed by a mass transfer from w2 to w3 (in the transition from
fn−1 to fn with n > l), so that

fl(w1)

π(w1)p
= C2 fl(w2)

π(w2)p
,

fn−1(w2)

π(w2)p
> C2fn−1(w3)

π(w3)p
. (3.23)

By choosing l as the largest number less than n such that mass is transferred into w2

in the transition from fl−1 to fl before the mass transfer from w2 to w3 takes place in
the transition from fn−1 to fn, we may assume that

fl(w2) = fn−1(w2). (3.24)

If v1, v3 denote the parents of w1, w3 respectively, then by Lemma 2.4(b)

D2(v1, v3) ≤ 1.

Consequently by assumption that µk is (C, π)-balanced, we have µk(v1)/π(v1)p ≤
C2µk(v3)/π(v3)p. However (3.23), (C, π)-compatibility of (µk, fl), (µk, fn−1) along
with (3.24) imply the opposite inequality µk(v1)/π(v1)p > C2µk(v3)/π(v3)p. We have
arrived at the desired contradiction and therefore the property (c) is verified.
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Next, we prove Lemma 3.11 by using the inductive construction in Lemma 3.14.

Proof of Lemma 3.11. Let k ∈ N≥0, and let µk be a (C, π)-balanced probability mass
function on Sk. As explained earlier, the transfer of mass is accomplished in two steps.
In the first ‘averaging’ step, we distribute the mass µk(v) to all its children such that the
mass distributed to each child w is proportional to π(w)p (or equivalently ρ(w)p); that is

f0(w) =
π(w)p∑

w′∈C(v) π(w′)p
µk(v),

for all v ∈ Sk and w ∈ C(v), where C(v) is as defined in (2.2).

By (H4), (H1) and the fact that every vertex has at least one child, we obtain

ηp−π(v)p ≤
∑

w′∈C(v)

π(w′)p ≤ π(v)p.

Therefore, we have
µk(v)

π(v)p
≤ f0(w)

π(w)p
≤ η−p−

µk(v)

π(v)p
≤ C

f0(w)

π(w)p
(3.25)

for all points v ∈ Sk and w ∈ C(v). Note that every point v ∈ Sk has at least one
child, because we always have (π1(v), π2(v) + 1) ∈ C(v) for any v ∈ S. This implies f0

is probability mass function on Sk+1 such that (µk, f0) is (C, π)-compatible as shown in
(3.25).

Let fT denote the probability mass function constructed from µk and f0 as given by
Lemma 3.14. We claim that µk+1 := fT is the probability mass function on Sk+1 with the
desired properties. Next, we show that µk+1 satisfies the conditions.

(1) This is an immediate consequence of Lemma 3.14(a).

(2) This follows from Lemma 3.14(b).

(3) It remains to verify condition (3). Since d(π1(v), π1(w)) < a−k for all w ∈ C(v), v ∈
Sk, there was a mass transfer over a distance of at most a−k while passing from µk
to f0. Therefore it suffices to verify that while passing from f0 to fT = µk+1 there is
a transfer over a distance of at most 2λa−k−1. Since d(π1(w), π1(w′)) < 2λa−k−1 for
all points w,w′ ∈ Sk+1 such that D2(w,w′) = 1, the desired conclusion follows from
Lemma 3.14(c).

�

We construct a doubling measure on (X, d) in Lemma 3.15 using Lemma 3.11.

Lemma 3.15 (Construction of doubling measure). Let (X, d) be a compact doubling
metric space and let S denote a hyperbolic filling with vertical and horizontal parameters
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a, λ respectively with a ≥ λ ≥ 6. Let ρ : S → (0,∞) denote a weight function that satisfies
the hypotheses (H1), (H2), and (H4). Let µ0 denote the (unique) probability measure
on S0 = {v0}. Let µk denote the probability measure on Sk for all k ∈ N constructed
inductively using Lemma 3.11. Let

µ̃k =
∑
v∈Sk

µk(v)δπ1(v) for all k ∈ N≥0,

denote a sequence of probability measures on X associated with the above construction.
Then any sub-sequential weak limit µ of (µ̃k)k∈N is a doubling measure on (X, d).

Proof. Observe that such a sub-sequential limit µ exists by Prokhorov’s theorem along
with the compactness of (X, d).

Since diam(X, d) = 1
2
, it suffices to consider r < 1. For x ∈ X choose a sequence {vn}

as given in Lemma 3.8. We obtain two sided bounds on µ(B(x, r)) using µn(vn) for a
suitably chosen value of n. To describe this let n ∈ N≥0 denote the largest integer such
that a−n ≥ r. We claim that

µ(B(x, r)) � µn(vn) (3.26)

where the constants of comparison are independent of x ∈ X, r ∈ (0, 1). Let us first show
the upper bound. If mass from µn(v), v ∈ Sn contributes to µ(B(x, r)), then by Lemma
3.11(3) we have

d(π1(v), x) ≤ r +
∞∑
k=n

(1 + 2λa−1)a−k =
(
1 + (1 + 2λa−1)(1− a−1)−1

)
a−n

Since λ > ((1−a−1)−1)(1 + 2λa−1), we have that x ∈ B(v, λa−n)∩B(vn, λa
−n) and hence

D2(v, vn) ≤ 1. Therefore

µ(B(x, r)) ≤
∑

v∈Sn:D2(v,vn)≤1

µn(v).

If D2(v, vn) ≤ 1 and v ∈ Sn, then by Lemma 3.11(1) and (H2), we obtain µn(vn) � µ(v) for
any pair of such vertices. Furthermore since (X, d) satisfies the metric doubling property,
the number of neighbors of each vertex is uniformly bounded above [BBS, Proposition
4.5]. Combining the above estimates yields the upper bound in (3.26).

For the lower bound, we consider µn+2(vn+2). By Lemma 3.11(3) and d(π1(vn+2), x) <
(1 + 2λa−1)a−(n+2), we note that the mass from vn+2 stays within B(x, s) where

s = (1 + 2λa−1)
(
1 + (1− a−1)−1

)
a−(n+2) < r

(since a−n−1 < r and a−1(1 + 2λa−1)(1 − a−1)−1 < 1). This implies that µ(B(x, r)) ≥
µn+2(vn+2). This along with Lemma 3.11(2) and (H1), we obtain µn+2(vn+2) � µn(vn).
Combining these estimates yields the lower bound for µ(B(x, r)) in (3.26).

Next, we show that (3.26) implies the desired doubling property. For the remainder
of the proof we assume r ∈ (0, 1/2). The case r ≥ 1/2 is similar and easier. Let N ∈ N≥0
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denote th largest integer such that a−N ≥ 2r. This implies a−(N+2) < 2a−1r < r. This
implies that n = N or n = N + 1. Therefore by the same argument as above (using
Lemma 3.11(2) and (H1)), we have µn(vn) � µN(vN). This along with (3.26) shows that
µ is a doubling measure on (X, d). �

Let Θρ denote the metric defined in (3.8). In the following proposition, we obtain
upper bound on the Assouad dimension of (X,Θρ). We establish this by showing that
the measure µ in Lemma 3.15 is p-homogeneous in (X,Θρ). This along with Theorem 3.1
shows that dimA(X,Θρ) ≤ p.

Proposition 3.16. Let (X, d) be a compact doubling metric space and let S denote a
hyperbolic filling with vertical and horizontal parameters a, λ respectively such that a ≥
λ ≥ 6. Let ρ : S → (0,∞) denote a weight function that satisfies the hypotheses (H1),
(H2), (H3), and (H4). Let Θρ denote the metric defined in (3.8) using Proposition 3.6.
Then the measure µ defined in Lemma 3.15 is p-homogeneous in (X,Θρ), where p is the
constant in (H4). In particular, dimA(X,Θρ) ≤ p.

Proof. For ease of notation, we abbreviate Θρ by Θ. By (3.7), there exists L > 1 such
that (3.9) holds. Let η−, η+, K0 denote the constants in (H1) and (H2).

Next, we show that µ is p-homogeneous in (X,Θ); that is, there exists C > 1 such
that

µ(BΘ(x, r))

µ(BΘ(x, s))
≤ C

(r
s

)p
for all x ∈ X, 0 < s < r. (3.27)

Let 0 < s < r and x ∈ X. Choose a sequence (vn)n∈N≥0
such that vn ∈ Sn for all n ∈ N≥0

as given in Lemma 3.8. Let k ∈ N≥0 be the smallest non-negative integer such that
π(vk) < K−1

0 s. By Lemma 3.9, Lemma 3.15 and (3.26), we have

µ(BΘ(x, s)) & µk(vk). (3.28)

If k = 0, then it we have 1 ≥ µ(BΘ(x, r)) ≥ µ(BΘ(x, s)) & 1 which implies (3.27). So it
suffices to consider the case k ≥ 1. The choice of k along with (H1) implies that

η−K
−1
0 s ≤ η−π(vk−1) ≤ π(vk) < K−1

0 s. (3.29)

Next, we bound µ(BΘ(x, r)) from above. We consider two cases depending on whether
or not r < (K0L)−1π(v0). If r < (K0L)−1π(v0), there exists l ∈ N such that π(vl) ≤ K0Lr
and π(vl−1) > K0Lr. Hence by (H1), we have

η−K0Lr < η−π(vl−1) ≤ π(vl) ≤ K0Lr. (3.30)

By Lemma 3.9, Lemma 3.15, and (3.26), we have

µ(BΘ(x, r)) ≤ µ
(
Bd(π1(vl), 2(λ+ 2)a−l)

)
. µ

(
Bd(π1(vl), a

−l)
)
. µl(vl). (3.31)

Since r > s, we have l ≤ k. Therefore by Lemma 3.11(2), we have

µl(vl)

π(vl)p
≤ µk(vk)

π(vk)p
, for any l ≤ k. (3.32)
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By (3.28), (3.31), (3.29), (3.30) and (3.32), we have

µ(BΘ(x, r))

µ(BΘ(x, s))
.

µl(vl)

µk(vk)
.
π(vl)

p

π(vk)p
� rp

sp
.

This implies (3.27) in the case r < (K0L)−1π(v0).

On the other hand, if r ≥ (K0L)−1π(v0) we use the trivial bound µ(BΘ(x, r)) ≤ 1 =
µ0(v0). By (3.28), (3.29), (3.32) and the bound 1 � π(v0) . r , we have

µ(BΘ(x, r))

µ(BΘ(x, s))
.
µ0(v0)

µk(vk)
.
π(v0)p

π(vk)p
.
rp

sp
.

This completes the proof of (3.27). By Theorem 3.1, we obtain the desired bound on
Assouad dimension. �

Proof of Theorem 3.3. This follows immediately from Corollary 3.7 and Proposition 3.16.
�

3.5 Upper bound on Assouad dimension using weights

In this subsection, we prove Theorem 3.4. The proof of the Theorem 3.4 is very similar
to that of [Car, Theorem 1.2] except for the use of Theorem 3.3 instead of [Car, Theorem
1.1]. For the convenience of the reader, we provide further details since the hypothesis

(H4) is different from (H̃4) of [Car]. To the reader who is familiar with Carrasco’s work,
we point out that the estimate in [Car, (2.52)] implies our version of (H4) for small enough
η0. The proof of other three hypothesis is similar. Readers who are familiar with the proof
of [Car, Theorem 1.2] may want to skip the proof of Theorem 3.4.

Let ρ : S → [0,∞) be a function. We define ρ∗ : S → [0,∞) as

ρ∗(v) = min{ρ(w) : w ∈ S : π2(w) = π2(v), D2(v, w) ≤ 1} for all v ∈ S. (3.33)

Similarly, we define π∗ : S → [0,∞) as

π∗(v) = min{π(w) : w ∈ S : π2(w) = π2(v), D2(v, w) ≤ 1} for all v ∈ S. (3.34)

If γ = (v1, . . . , vN) is a horizontal path, we define

Lh(γ, ρ) =
N−1∑
j=1

ρ∗(vj) ∧ ρ∗(vj+1). (3.35)

We introduce the following hypothesis on ρ : S → [0,∞) which serves as a simpler
sufficient condition for (H3):

(H3’) for all k ≥ 1, for all v ∈ Sk and for all γ ∈ Γk+1(v), it holds Lh(γ, ρ) ≥ 1,
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where Lh(γ, ρ) is as defined in (3.35). The hypothesis (H3’) is simpler to verify than (H3)
because it only involves curves with horizontal edges. The following is a version of [Car,
Proposition 2.9] and provides a useful sufficient condition for (H3).

Proposition 3.17. Let (X, d) be a compact doubling metric space. Let (S, D2) denote
the hyperbolic filling with horizontal and vertial parameters λ, a respectively that satisfy
a ≥ λ ≥ 6. Assume that there exists p > 0 and a function ρ : S → (0,∞) which satisfy
the hypotheses (H1), (H2), and (H3’). Then the function ρ also satisfies (H3).

The proof of Proposition 3.17 requires several lemmas. We say that a path γ =
(v1, . . . , vN) is of level k (resp. level at most k) if π2(vi) = k (resp. π2(vi) ≤ k) for all
i = 1, . . . , N .

Lemma 3.18. (Cf. [Car, Lemma 2.10] ) Let (X, d) and (S, D2) be as given in Proposition
3.17. Let k ≥ 0 and v ∈ Sk. Assume that ρ satisfies (H3’). Consider a horizontal path
γ = (v1, . . . , vn) of level k + 1 such that π1(vi) ∈ B(π1(v), 3a−k) for all i = 1, . . . , N ,
π1(v1) ∈ B(π1(v), a−k) and π1(vN) /∈ B(π1(v), 2a−k). Let w denote the parent of z1. Then

N−1∑
i=1

π∗(vi) ∧ π∗(vi+1) ≥ max{π∗(v), π∗(w)}.

Proof. First, we show that for all j = 1, . . . , N ,

π∗(vj) ≥ max{π∗(v), π∗(w)}min{ρ(wj) : wj ∈ Sk+1, D2(wj, vj) ≤ 1}. (3.36)

Let w̃j ∈ Sk+1 be such that π∗(vj) = π(w̃j) and D2(w̃j, vj) ≤ 1. Let uj ∈ Sk be the parent
of wj. Then by Lemma 2.4(a),

d(π1(v), π1(uj)) ≤ d(π1(v), π1(vj)) + d(π1(vj), π1(w̃j)) + d(π1(w̃j), π1(uj))

< 3a−k + 2λa−k−1 + a−k = (4 + 2λa−1)a−k < λa−k,

d(π1(w), π1(v)) ≤ d(π1(w), π1(v1)) + d(π1(v1), π1(v)) < a−k + a−k < λa−k

The above estimates imply that D2(v, uj) ≤ 1 and D2(w, uj) ≤ 1. Therefore π(uj) ≥
max{π∗(v), π∗(w)} and hence

π∗(vj) = π(w̃j) = π(uj)ρ(w̃j)

≥ max{π∗(v), π∗(w)}min{ρ(wj) : wj ∈ Sk+1, D2(wj, vj) ≤ 1}.

This completes the proof of (3.36). Therefore, we have

N−1∑
i=1

π∗(vi) ∧ π∗(vi+1)
(3.36)

≥ max{π∗(v), π∗(w)}
N−1∑
i=1

ρ∗(vi) ∧ ρ∗(vi+1)

= max{π∗(v), π∗(w)}Lh(γ, ρ) ≥ max{π∗(v), π∗(w)},

where we use (3.36) in the first line and (H3’) and the second line above. �
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We introduce a different notion of length on paths. For any edge e = {u, v} we define

̂̀
1(e) =

{
π∗(u) ∧ π∗(v) if e = {u, v} is a horizontal edge,

K0η
−1
− π∗(v) if e = {u, v} and u is a parent of v,

(3.37)

and for a path γ = (v1, . . . , vN), we define

̂̀
1(γ) =

N−1∑
i=1

̂̀
1(ei), where ei = {vi, vi+1}. (3.38)

If w ∈ Sk+1, u, v ∈ Sk such that D2(u, v) = D2(u,w) = 1, then by (H1) and (H2), we have

̂̀
1({u, v}) ≤ π∗(u) ≤ π(u) ≤ η−1

− π(w) ≤ K0η
−1
− π∗(w) ≤ ̂̀1({u,w}). (3.39)

Lemma 3.19. [Cf. [Car, Lemma 2.11]] Let (X, d) and (S, D2) be as given in Proposition
3.17. Assume that ρ : S → [0,∞) satisfies the hypotheses (H1), (H2), (H3’). Let u, v ∈
Sk+1 be such that d(π1(u), π1(v)) > 4a−k. Let γ = (v1, . . . , vN) be a path of level at most
k + 1 from v1 = u to vN = v. Then there exists a path γ′ = (u1, . . . , uM) of level at most
k such that:

1. u1, uM are parents of v1 and vN respectively, and

2. ̂̀1(γ′) ≤ ̂̀1(γ).

Proof. Let γ = (v1, . . . , vN) be a path of level at most k + 1 as given in the statement
of the lemma. We decompose γ into sub-paths of level at most k or level equal to k + 1.
Let s1 = 1. Define inductively positive integers si, ti as

ti = min{j > si : π2(vj) ≤ k or j = N},
si+1 = min{j ≥ ti : π2(vj+1) = k + 1}.

We stop when ti = N for some i = L. Note that π2(vs1) = π2(vtL) = k + 1, and

π2(vsi) = π2(vtj) = k for i 6= 1 and j 6= L. Since we are trying to bound ̂̀1(γ) from below,
we may assume that path γ has no self-intersections; that is vi 6= vj for all i 6= j. In
particular, vsi 6= vti for all i.

For each i = 1, . . . , L, let γi denote the sub-path (vsi , . . . , vti−1). We will replace each

path γi with γ′i such that ̂̀1(γ′i) ≤ ̂̀1(γi).

First, we consider 2 ≤ i ≤ L − 1 and postpone the cases i = 1, L to the end. Let
2 ≤ i ≤ L− 1. We consider two cases.

Case 1: π1(vj) ∈ B(π1(vsi), 2a
−k) for all j = si + 1, . . . , ti − 1.

In this case, vsi , vti ∈ Sk and are the parents of vsi+1, vti−1 respectively. By Lemma
2.4(c), D2(vsi , vti) = 1 and hence we replace γi with γ′i = (vsi , vti). From (3.39), we obtain

̂̀
1(γ′i) ≤ ̂̀1({vsi , vsi+1}) ≤ ̂̀1(γi).
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Case 2: There exists j1 ∈ {si+1, ti−1} such that π1(vj1) /∈ B(π1(vs1 , 2a
−k)). We assume

j1 is the first index with this property. We denote j0 = si + 1, w0 = vsi ∈ Sk. Suppose
jl, wl are defined, and if jl < ti − 1, we define

jl+1 = min{jl < j < ti − 1 : π1(vj) /∈ B(π1(wl), 2a
−k) or j = ti − 1},

and let wl+1 ∈ Sk be the parent of vjl+1 ∈ Sk+1. Let Li be such that jLi = ti − 1.

If l ∈ {0, . . . , Li − 2}, we have π1(vjl+1
) /∈ B(π1(wl), 2a

−k). Since a > 2λ, we have
d(π1(wl), π1(vjl+1)) ≤ d(π1(wl), π1(vjl)) + d(π1(vjl), π1(vjl+1)) < 2a−k + 2λa−k−1 < 3a−k.
Therefore by Lemma 3.18, Lemma 2.4(c), and (3.39), we havề

1((wl, wl+1)) ≤ π∗(wl) ≤ ̂̀1 ((vjl , . . . , vjl+1−1)
)

for all l = 0, . . . , Li − 2. (3.40)

The above estimate (3.40) is also true for j = Li−1 by combining the above argument and
with that of case 1 by considering depending on whether or not π1(vj1) /∈ B(π1(vs1 , 2a

−k)).
Hence γ′i = (w0, . . . , wLi−1, wLi), where w0 = vsi , wLi = vti . By (3.40) along with the above
remark, we obtain ̂̀

1(γ′i) ≤ ̂̀1(γi), for i ∈ {2, . . . , L− 1}.
The case i = 1 is also similar to above. Let u1 be the parent of v1. Similar to argument
above, we consider two cases depending on whether or not π1(vj) ∈ B(π1(u1), 2a−k) for
all j = 1, . . . , ti − 1 as explained in [Car, proof of Lemma 2.11]. This yields a path γ′1
from u1 to vt1 . The case i = L is exactly same as i = 1 after reversing the order in which
the vertices of γL appear. By concatenating the paths γ′1, . . . , γ

′
L, we obtain the path

(u1, . . . , uM) with desired properties. �

Lemma 3.20. (Cf. [Car, Lemma 2.12]) Let (X, d) and (S, D2) be as given in Proposition
3.17. Assume that ρ : S → [0,∞) satisfies the hypotheses (H1), (H2), and (H3’). There
exists a constant K2 ≥ 1 such that the following property: for all x, y ∈ X, there exists
k0 depending on x, y such that for all k ≥ k0, if u, v ∈ Sk such that x ∈ Bu, y ∈ Bv, then
any path γ joining u and v satisfieŝ̀

1(γ) ≥ K−1
2 π(c(x, y)).

Proof. Let u, v ∈ Sk be such that x ∈ Bu, y ∈ Bv. Let m be such that π2(w) = m
for some (or equivalently, for all) w ∈ c(x, y). By (2.8), we have d(x, y) > a−m−1. For
k ≥ m+ 2, we have (using a ≥ 12)

d(π1(u), π1(v)) ≥ d(x, y)−d(x, π1(u))−d(y, π1(v)) > a−m−1−2a−m−2 ≥ 10a−m−2. (3.41)

The idea is to use Lemma 3.18 to find a path of level at most m + 2 whose ̂̀1 length is
larger than ̂̀1(γ). We consider two cases.

Case 1: The path γ is of level at most k, where k ≥ m + 2. By (3.41), we can apply
Lemma 3.18. Set γk = γ. Let ul, vl ∈ Sl be such that u, v are descendants of ul, vl
respectively. By Lemma 2.4(a), for all l ≥ m+ 2, we have

d(π1(ul), π1(vl)) ≥ d(π1(u), π1(v))− d(π1(u), π1(ul))− d(π1(v), π1(vl))

≥ 10a−m−2 − 2
a

a− 1
a−l > 6a−m+2.
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Using the above estimate, and applying Lemma 3.18 repeatedly we obtain path γm+2 of
level at most m+2 from um+2 to vm+2 such that ̂̀1(γ) ≥ ̂̀1(γm+2). This along with (3.39),
(H1), (H2), implieŝ̀

1(γ) ≥ K−2
0 π(um+2) ≥ K−2

0 η2
−π(um) ≥ K−3

0 η2
−π(c(x, y)).

In the last estimate, we usedD2(um, w) ≤ 1 for any w ∈ c(x, y) (since x ∈ B(π1(um), λa−m)∩
B(π1(w), λa−m) 6= ∅).
Case 2: γ is not a path of level at most k. Let n > k be the smallest integer such that
γ is a path of level at most n. Let k0 ≥ m+ 2 be large enough so that

K−3
0 η2

−η
m
− ≥ 4K0η

−1
−

∞∑
i=k0

ηi+.

Let ũn, ṽn ∈ Sn be such that x ∈ Bũn , y ∈ Bṽn and let ũk, ṽk ∈ Sk be the ancestors of
ũn, ṽn respectively. By Lemma 2.4(a), D2(ũn, un) ≤ 1 and D2(ṽn, vn) ≤ 1. Let γu denote
the path from ũn to u formed by concatenating the genealogy from ũn to ũk and adding
an edge from ũk to uk if necessary. Similarly, let γv denote the path from v to ṽn formed
in a similar fashion. By concatenating γu, γ, γv we obtain a path γ̃ from ṽn to ũn whose
level is at most n. Using the first case, we obtain

`1(γ̃) ≥ K−3
0 η2

−π(c(x, y)) ≥ K−3
0 η2

−η
m
− ≥ 4K0η

−1
−

∞∑
i=k0

ηi+ ≥ 2`1(γu) + 2`1(γv).

This implies

`1(γ) ≥ 1

2
K−3

0 η2
−π(c(x, y))

for any k ≥ k0. �

Proof of Proposition 3.17. By (H1), (H2), there exists c > 0 such that

Lρ(γ) ≥ ĉ̀1(γ) for all paths γ in (S, D2).

This estimate along with Lemma 3.20 implies (H3). �

The statement of the lemma below is slightly different from that of [Car, Lemma 2.13]
and the proof is omitted as it is similar to [Car].

Lemma 3.21. ([Car, Lemma 2.13]) Let (X, d) and (S, D2) be as given in Theorem 3.4.
Suppose we have a function π0 : Sk → (0,∞) such that

1

K
≤ π0(v)

π0(w)
≤ K for all v, w ∈ Sk such that D2(v, w) ≤ 1, (3.42)

where K ≥ 1 is a constant. Suppose also that there is function π1 : Sk+1 → (0,∞) such
that for any u ∈ Sk and for any v ∈ Sk+1 such that u is the parent of v, we have

1 ≤ π0(u)

π1(v)
≤ K. (3.43)
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Let π̂1 : Sk+1 → [0,∞) be defined as

π̂1(w) = π1(w) ∨
(

1

K
max{π1(v) : v ∈ Sk+1, D2(v, w) ≤ 1}

)
. (3.44)

Then for all w1, w2 ∈ Sk+1 such that D2(w1, w2) ≤ 1, we have

1

K
≤ π̂1(w1)

π̂1(w2)
≤ K. (3.45)

Lemma 3.22. (see [Car, Lemma 2.14]) Let G = (V,E) be a graph whose vertices has a
degree bounded by K and let p > 0. Let Γ be a family of paths of G. Let τ : V → [0,∞)
that satisfies

N−1∑
i=1

τ(vi) ≥ 1 for all paths γ = (v1, . . . , vN) ∈ Γ.

Let dG : V × V → [0,∞) denote the combinatorial graph distance metric on V . Let
τ̂ : V → [0,∞) be defined as

τ̂(v) = 2 max{τ(w) : w ∈ V, dG(w, v) ≤ 2}.

Then
N−1∑
i=1

τ̂ ∗(vi) ∧ τ̂ ∗(vi+1) ≥ 1 for all paths γ = (v1, . . . , vN) ∈ Γ,

where τ̂ ∗(v) = min{τ̂(w) : dG(w, v) ≤ 1}, and such that∑
v∈V

τ̂(v)p ≤ 2p(K2 + 1)
∑
v∈V

τ(v)p.

The statement of Lemma 3.22 is slightly different from that of [Car, Lemma 2.14] where
the term K2 + 1 was replaced by K2. This is because the estimate #{w ∈ V : dG(w, v) ≤
2} ≤ K2 for all v ∈ V in [Car] must be replaced by #{w ∈ V : dG(w, v) ≤ 2} ≤ K2 + 1.
The proof is otherwise identical and is omitted.

Proof of Theorem 3.4. Let η0 ∈ (0, 1) whose value will be determined later. Since (X, d) is
doubling there exists M1 ∈ N, depending only on a, λ and the doubling constant such that
the number of neighbors of each vertex in (S, D1) is bounded by M1, and in particular
the number of children of each vertex uniformly bounded above [BBS, Proposition 4.5].
Set

η− =
(
η0M

−1
1

)1/p ∈ (0, 1).

Let σ : S → [0,∞) satisfy (S1) and (S2). We define τ : S → [0,∞) as τ := (σp +ηp−)1/p ≥
η−, which also satisfies (S1). The function τ satisfies∑

v∈C(u)

τ(v)p ≤
∑
v∈C(u)

(σ(v)p + ηp−) ≤ 2η0 for all u ∈ S. (3.46)
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By [Hei, Exercise 10.17], there exists M2, depending only on λ and doubling constant of
(X, d), such that

#{w ∈ S : D2(v, w) = 1, π2(w) = π2(v)} ≤M2 for all v ∈ S. (3.47)

That is, the number of horizontal edges at any vertex is uniformly bounded in M2. By
Lemma 3.22, the function

τ̂(v) := 2 max{τ(w) : w ∈ Sπ2(v), D2(v, w) ≤ 2}

satisfies condition (H3’) and∑
v∈C(u)

τ̂(v)p ≤ 2p(M2
2 + 1)

∑
w∈Sπ2(u)+1,

D2(w,v)≤2

τ(w)p (by Lemma 3.22)

≤ 2p(M2
2 + 1)

∑
ũ∈Sπ2(u),
D2(w,v)≤1

∑
w∈C(ũ)

τ(w)p (by Lemma 2.4(b))

≤ 2p+1(M2
2 + 1)

∑
ũ∈Sπ2(u),
D2(w,v)≤1

η0 (by (S2))

≤ 2p+1(M2
2 + 1)(M2 + 1)η0 (by (3.47)). (3.48)

We construct a function ρ : S → [0,∞) that satisfies

(1) ρ(v) ≥ τ̂(v) for all v ∈ S.

(2) ρ satisfies (H2) with K0 = η−1
− .

(3) ρ(v) ≤ max{τ̂(w) : D2(w, v) ≤ 1, π2(w) = π2(v)} for all v ∈ S.

The idea behind the proof is to inductively construct ρ on Sk for k = 0, 1, . . .. Since the
conditions (2) and (3) depend only on horizontal edges this inductive construction works
well. We pick ρ(v0) = τ̂(v0) where v0 ∈ S0. Clearly, this satisfies (1), (2), (3) on S0

because S0 is a singleton set. Suppose we have constructed ρ on ∪ij=0Sj, we construct ρ
on Si+1 as follows. Define π0 : Si → (0,∞), π1 : Si+1 → (0,∞) as

π0(u) =
∏

w∈g(u)

ρ(w), π1(v) = τ̂(v)
∏

w∈g(v),w 6=v

ρ(w) = τ̂(v)π0(ṽ)

for all u ∈ Si, v ∈ Si+1, where ṽ ∈ Si is the parent of v ∈ Si+1. Using the estimate
τ̂ ≥ η− along with induction hypothesis, π0, πi satisfy the hypotheses of Lemma 3.21 with
K = η−1

− . Consider the function π̂1 : Si+1 → (0,∞) defined by (3.44) as

π̂1(w) = π1(w) ∨
(

1

K
max{π1(v) : v ∈ Si+1, D2(v, w) ≤ 1}

)
,
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and set ρ : Si+1 → (0,∞) as

ρ(w) =
π̂1(w)

π0(w̃)
for all w ∈ Si+1, where w̃ is the parent of w.

Since π̂1 ≥ π1 the condition (1) is satisfied. By Lemma 3.21, the condition (2) above is
also satisfied on ∪i+1

j=0Sj. It only remains to check (3) on Si+1. For v ∈ Si+1, we have two
possibilities for π̂1(v); either π̂1(v) = π1(v) or π̂1(v) = K−1π1(w) for some w ∈ Si+1 such
that D2(v, w) = 1. The first possibility implies that ρ(v) = τ̂(v) and hence (3) is satisfied
for v. The other possibility is that π̂1(v) = K−1π1(w) ≥ π1(v). In this case, let ṽ, w̃ ∈ Si
denote the parents of v, w respectively. By Lemma 2.4(b), D2(ṽ, w̃) ≤ 1. Therefore by
condition (2) in the induction hypothesis, we have

ρ(v) =
τ̂(w)π0(w̃)

Kπ0(ṽ)
≤ τ̂(w),

which concludes the proof of condition (3) above. By induction, there exists a function
ρ : S → (0,∞) which satisfies (1), (2), (3) above.

Next, we want to show that ρ satisfies the upper bound ρ ≤ η+ in (H1) for some
η+ ∈ (0, 1) and the hypothesis (H4) whenever η0 is small enough. To this end, consider∑

v∈C(u)

ρ(v)p ≤
∑
v∈C(u)

∑
w∈S:D2(v,w)≤1,
π2(v)=π2(w)

τ̂(w)p (by condition (3))

≤ (M2 + 1)
∑

ũ∈S:D2(u,ũ)≤1,
π2(ũ)=π2(u)

∑
v∈C(ũ)

τ̂(v)p (by (3.47) and Lemma 2.4(c))

≤ 2p+1(M2
2 + 1)(M2 + 1)3η0 (by (3.47) and (3.48)).

By the above estimate, the choice η0 ∈ (0, 1) such that 2p+1(M2
2 + 1)(M2 + 1)3η0 = 2−p

implies the upper bound ρ ≤ η+ in (H1) for η+ = 1
2
∈ (0, 1) and also (H4). Since τ̂

satisfies (H3’) and ρ ≥ τ̂ , ρ also satisfies (H3’). This along with conditions (1), (2) above
and Proposition 3.17 implies that ρ satisfies (H1), (H2), (H3), and (H4). The desired
conclusion follows from Theorem 3.3. �

4 Critical exponent associated to the combinatorial

modulus

Let G = (V,E) be a graph and let Γ be a family of paths in G. Consider a function
ρ : V → [0,∞) and for γ ∈ Γ, we define its ρ-length as

`ρ(γ) :=
∑
v∈γ

ρ(v),
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and its p-mass by

Mp(ρ) =
∑
v∈V

ρ(v)p.

The p-combinatorial modulus2 of Γ is defined as

Modp(Γ, G) = inf
ρ∈Adm(Γ)

Mp(ρ),

where Adm(Γ) := {ρ : V → [0,∞) | `ρ(γ) ≥ 1 for all γ ∈ Γ} denote the set of Γ-
admissible functions. If Γ = ∅, we set Modp(Γ, G) = 0 by convention.

We recall the definition of critical exponent of the combinatorial modulus associated to
a compact metric space (X, d). The idea behind the following definition is to approximate
the compact metric space by a sequence of graphs Gk. Then the behavior of the modulus
of (discrete) family of curves on Gk which ‘cross an annulus’ as k → ∞ determines a
critical exponent.

Definition 4.1. Let a, λ, L ∈ (1,∞) and p > 0 and let (X, d) be a compact metric
space. Let Xk denote a maximal a−k separated subset of X for all k ≥ 0 and let Sk =
{(x, k) : x ∈ Xk}. In this section, we need not assume that Xk is increasing in k. Let
π1 : Sk → X, π2 : Sk → N≥0 be the projection maps to the first and second components.
For each k ≥ 1, we define a graph Gk whose vertex set is Sk and there is an edge between
distinct vertices v and w if and only if B(π1(v), λa−π2(v)) ∩ B(π1(v), λa−π2(v)) 6= ∅. For
v ∈ S, we define

Γk,L(v) = inf

{
γ = (v1, v2, . . . , vn)

∣∣∣∣∣ γ is a path in Gπ2(v)+k with π1(v1) ∈ Bv,
π1(vn) /∈ B(π1(v), La−π2(v))

}
. (4.1)

Define

Mp,k(L) = sup
v∈S

Modp(Γk,L(v), Gπ2(v)+k),

Mp(L) = lim inf
k→∞

Mp,k(L). (4.2)

The critical exponent of the combinatorial modulus of (X, d) is defined as

CE(X, d) = inf{p ∈ (0,∞) : Mp(L) = 0}. (4.3)

If ρ ∈ Adm(Γ), then 1 ∧ ρ ∈ Adm(Γ). This shows that Modp(Γ, G) is non-increasing
in G for any family of paths Γ and any graph G. This shows that the set of p such that
Mp(L) = 0 is an interval.

Strictly speaking CE(X, d) should be denoted as CE(X, d, a, λ, L, {Xk : k ≥ 0}) since
it might depend on all these choices of a, λ, L and {Xk : k ≥ 0}. It is known that this

2One could alternatively define the function ρ on edges instead of vertices but for bounded degree
graphs this would lead to an equivalent quantity. This follows from an argument of He and Schramm
proof in [HS, Proof of Theorem 8.1]. Our results could be stated in terms of this alternate definition as
well.
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exponent does not depend on the choice of L > 1 [Car, Lemma 3.3]. We will show that it
also does not depend on the choices of the a, λ ∈ (1,∞) and {Xk : k ≥ 0}. To this end,
we recall the following lemma. Given a set Y , we use the notation 2Y and #Y to denote
the power set of Y and the cardinality of Y respectively.

Lemma 4.2. [Kig22, Lemma C.4] Let G = (V,E), G̃ = (Ṽ , Ẽ) be two graphs and let

H : V → 2Ṽ be a function so that #H(v) < ∞ for all v ∈ V . Let Γ, Γ̃ be two families

of paths in G, G̃ respectively such that for each γ ∈ Γ, there exists γ̃ ∈ Γ̃ so that γ̃ is
contained in ∪v∈γH(v). Then

Modp(Γ, G) ≤
(

sup
v∈V

#H(v)

)p
sup
ṽ∈Ṽ

#{v ∈ V | ṽ ∈ H(v)}Modp(Γ̃, G̃). (4.4)

The following proposition shows that the critical exponent for the combinatorial mod-
ulus is well defined.

Proposition 4.3 (critical exponent is well defined). Let a, ã, λ, λ̃, L, L̃ ∈ (1,∞). Let Xk

(resp. X̃k) denote a sequence of maximal a−k-separated (resp. ã−k-separated) subsets of

X. Let Q, Q̃ denote the corresponding critical exponents be as defined in (4.3) for these
two sets of parameters. Then

Q = Q̃.

Proof. Let Mp,k(L) and M̃p,k(L̃) be as defined in (4.2). Let Gk, G̃k, k ≥ 0 be the

corresponding graphs with vertex sets Sk, S̃k respectively. By symmetry, it suffices to
show that Q ≤ Q̃. Or equivalently, it suffices to show that Q ≤ p for any p > Q̃. To show
this, we need an upper bound on Modp(Γk,L(v), Gπ2(v)+k) for v ∈ Gn, n ∈ N. Let m ∈ Z
be the unique integer such that

2L̃ã−m ≤ (L− 1)

2
a−1 < 2L̃ã−m+1. (4.5)

For any n ∈ N, let ñ ∈ N be the unique positive integer such that

2L̃ã−ñ+(1−m)+ ≤ (L− 1)

2
a−n < 2L̃ã−ñ+1+(1−m)+ . (4.6)

For any k̃ ∈ N, let k ∈ Z be the unique integer such that

a−k ≤ (L− 1)(λ̃− 1)

4L̃λã1+(1−m)+
ã−k̃ < a−k+1. (4.7)

It is evident that there exists k0 ∈ N such that k̃ ≥ k0 implies that k ≥ 1 (that is k ∈ N).

For the remainder of the proof we assume k̃ ≥ k0. By (4.6) and (4.7), we have

λa−n−k < (λ̃− 1)ã−ñ−k̃,
ã−ñ−k̃

a−n−k
≤ ãaλ

λ̃− 1
. (4.8)
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For all l, l̃ ∈ N, we define a family of maps Hl,l̃ : Sl → S̃l̃ such that Hl,l̃(v) = {w} where

w ∈ S̃l̃ is such that d(π1(v), π1(w)) < ã−l̃ or equivalently, π1(v) ∈ B(π1(w), ã−l̃). Since⋃
u∈S̃

l̃
B(π1(u), ã−l) = X such a w ∈ S̃l̃ exists. By [Hei, Exercise 10.17], there exists

β > dimA(X, d) and C1 > 1 such that

sup
w∈S̃

l̃

#{v ∈ Sl : w ∈ H(v)} ≤ C1

(
1 ∨ ã

−l̃

a−l

)β

.

In particular, for any k, k̃, n, ñ ∈ N that satisfy (4.7) and (4.8), we have

sup
w∈S̃

ñ+k̃

#{v ∈ Sn+k : w ∈ H(v)} ≤ C1

(
1 ∨ ãaλ

λ̃− 1

)β
. (4.9)

Let γ = (v1, . . . , vN) ∈ Γn,k(v), v ∈ Sn denote an arbitrary path. Note that, vi ∈ Sn+k for
all i = 1, . . . , N . Consider the sequence (w1, . . . , wN) such that {wi} = Hn+k,ñ+k̃(vi)

for all i = 1, . . . , N . By the first estimate in (4.8), we have B(π1(vi), λa
−n−k) ⊂

B(π1(wi), λ̃ã
−ñ−k̃) for all i. This in turn implies for any i = 1, . . . , N−1, either wi = wi+1

or wi and wi+1 are neighboring vertices in G̃ñ+k̃. This implies that for any γ ∈ Γk,L(v)

there exists a path γ̃ in G̃ñ+k̃ from w1 to wN . Therefore by the triangle inequality,

d(π1(w1), π1(wN)) ≥ (L− 1)a−n − 2ã−ñ−k̃
(4.6)

≥ (4L̃− 2ã−k̃)ã−ñ ≥ 3L̃ã−ñ (4.10)

for all k̃ ∈ N large enough such that 2ã−k̃ ≤ L. Since π1(v1) ∈ B(π1(v), a−n) ∩
B(π1(w1), ã−ñ−k̃), we have d(π1(v), π1(w1)) < a−n + ã−ñ−k̃. There exists ṽ ∈ S̃ñ such

that π1(w1) ∈ B(π1(ṽ), ã−ñ). Therefore by (4.10), the path γ̃ ∈ Γ̃k̃,L̃(ṽ) for any k̃ large

enough such that 2ã−k̃ ≤ L, where

d(π1(ṽ), π1(v)) ≤ d(π1(v), π1(w1)) + d(π1(ṽ), π1(w1))

< a−n + ã−ñ−k̃ + ã−ñ ≤ a−n + 2ã−ñ

≤ã−ñ
(

2 +
4L̃ã1+(1−m)+

L− 1

)
(by (4.6)).

Setting κ =
(

2 + 4L̃ã1+(1−m)+

L−1

)
, we conclude that for all large enough k̃ ∈ N, n ∈ N, v ∈

Sn, γ ∈ Γk,L(v), there exists γ̃ ∈ Γ̃k̃,L̃ such that ṽ ∈ S̃ñ with d(π1(ṽ), π1(v)) < κã−ñ and γ̃
is contained in

⋃
u∈γ Hn+k,ñ+k̃(u), where ñ, k are as given by (4.6) and (4.7) respectively.

By [Hei, Exercise 10.17], there exists C2 > 1 such that

sup
v∈Sn

#{ṽ ∈ S̃ñ : d(π1(ṽ), π1(v)) < κã−ñ} ≤ C2κ
β. (4.11)
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Now combining the above with Lemma 4.2, (4.9) and (4.11), we obtain

Mod(Γk,L(v)) ≤ C1

(
1 ∨ ãaλ

λ̃− 1

)β
Mod

 ⋃
ṽ∈S̃ñ,

d(π1(ṽ),π1(v))<κã−ñ

Γ̃k̃,L̃(ṽ)


≤ C1

(
1 ∨ ãaλ

λ̃− 1

)β ∑
ṽ∈S̃ñ,

d(π1(ṽ),π1(v))<κã−ñ

Mod
(

Γ̃k̃,L̃(ṽ)
)

≤ C1

(
1 ∨ ãaλ

λ̃− 1

)β
C2κ

βM̃p,k̃(L̃)

for all n ∈ N, v ∈ Sn and for all k̃ ∈ N large enough. This implies that

Mp,k(L) ≤ C1

(
1 ∨ ãaλ

λ̃− 1

)β
C2κ

βM̃p,k̃(L̃)

for all k̃ ∈ N large enough and for all k ∈ N defined by (4.7). This immediately implies

the desired inequality Q ≤ p for any p > Q̃. �

The following ‘reverse volume doubling estimate’ is known if the metric space is uni-
formly perfect [Hei, Exercise 13.1]. Since our metric space is not necessarily uniformly
perfect, the following lemma provides a substitute for uniform perfectness at sufficiently
many scales.

Lemma 4.4. Let µ be a doubling measure on a metric space (X, d) such that µ(B(x, 2r)) ≤
CDµ(B(x, r)) for all x ∈ X, r > 0. Let x0, . . . , xN be a set of points such that d(xi, xi+1) <
r/4 for all i = 0, . . . , N−1 where d(x0, xN) > R > r. Then there exists c, α > 0 depending
only on CD such that µ(B(x0, R)) ≥ c(R/r)αµ(B(x0, r)).

Proof. If s ∈ [r, R/2], then by triangle inequality there exists xj such that

5

4
s ≤ d(x0, xj) ≤

7

4
s.

By the doubling property, for such xj, we have

µ(B(xj, s/4)) ≥ C−3
D µ(B(xj, 4s)) ≥ C−3

D µ(B(x0, s))

Therefore

µ(B(x0, 2s)) ≥ µ(B(x0, s)) + µ(B(xj, s/4)) ≥ (1 + C−3
D )µ(B(x0, s))

for all such s ∈ [r, R/2]. Let k be the largest integer such that 2kr ≤ R. By iterating the
above estimate

µ(B(x0, R)) ≥ µ(B(x0, 2
k−1r)) ≥ (1 + C−3

D )k−1µ(B(x0, r)) ≥ c

(
R

r

)
µ(B(x0, r))

where α = log(1 + C−3
D )/ log 2 and c = (1 + C−3

D )−1. �
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4.1 Proof of Theorem 1.2

In this section, we complete the proof of Theorem 1.2. That is, we show that for any
compact, doubling, metric space (X, d), we have

dimCA(X, d) = CE(X, d) = inf{dimA(X, θ) : θ ∈ Jp(X, d)}.

The following lemma is useful to obtain upper bounds on the critical exponent CE(X, d).

Lemma 4.5. Let (X, d) be a compact metric space and a ≥ λ ≥ 6. Let θ ∈ J (X, d) and µ
be a q-homogeneous measure on (X, θ). Let S denote a hyperbolic filling with parameters
a, λ. For all v ∈ S, k ∈ N, we define ρv : Sπ2(v)+k → [0,∞) as

ρv(w) =


(
µ(Bw)
µ(Bv)

)1/q

if Bw ∩Bd(π1(v), (L+ 1)a−π2(v)) 6= ∅, w ∈ γ for some γ ∈ Γk,L(v),

0 otherwise.

(4.12)
Then there exists c > 0, k0 ∈ N depending only on d, θ, µ, a, L so that∑

w∈γ

ρv(w) ≥ c for all γ ∈ Γk,L(v), v ∈ S (4.13)

for all k ≥ k0.

Proof. Let γ ∈ Γk,L(v). To show (4.13), by choosing a sub-path if necessary, we may
assume that γ = (v1, . . . , vN) and π1(v1) ∈ Bv, π1(vj) /∈ B(π1(v), a−π2(v)) = Bv for all
j = 2, . . . , N − 1, π1(vi) ∈ B(π1(v), La−π2(v)) for all i = 1, . . . , N − 1 and vN /∈ π1(vi) ∈
Bd(π1(v), La−π2(v)). Since

d(π1(vi), π1(vi+1)) < 2λa−k−π2(v) ≤ a−k−π2(v)+1 ≤ a−π2(v) for all i = 1, . . . , N − 1,
(4.14)

we have vN ∈ B(v, (L+ 1)a−π2(v)). In particular,

zi ∈ Bd(π1(vi), 2λa
−π2(vi)) \Bd(π1(vi), a

−π2(vi)) 6= ∅ for all i = 1, . . . , N , (4.15)

where zi = π1(vi+1) for i = 1, . . . , N − 1 and π1(vi−1) for i = N . Let η : [0,∞) →
[0,∞) be a distortion function such that the identity map Id : (X, d) → (X, θ) is an
η-quasisymmetry. This along with the choice of zi above this implies that

Bθ(π1(vi), c1θ(π1(vi), zi)) ⊂ Bd(π1(vi), a
−π2(vi)) = Bvi ⊂ Bθ(π1(vi), η(1)θ(π1(vi), zi))

(4.16)
for all i = 1, . . . , N , where c1 = [η (2λ)]−1. Since d(π1(v), π1(vi)) < (L + 1)a−π2(v) for
all i = 1, . . . , N , we have Bv = Bd(π1(v), a−π2(v)) ⊂ Bd(π1(vi), (L + 2)a−π2(v)). Choosing
wi ∈ {π1(v), π1(vN)} such that 2(L + 1)a−π2(v) > d(π1(vi), wi) ≥ d(π1(v), π1(vN))/2 ≥
La−π2(v)/2, we have

Bv ⊂ Bd(π1(vi), (L+ 2)a−π2(v)) ⊂ Bθ(π1(vi), C2θ(π1(vi), wi)) (4.17)
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for all i = 1, . . . , N , where C2 = η(2(L+ 2)L−1). Furthermore

Bθ(π1(vi), θ(π1(vi), wi)) ⊂ Bd(π1(vi), η(1)d(π1(vi), wi)) ⊂ Bd(π1(v), C3a
−π2(v)), (4.18)

where C3 = (L+ 1)(2η(1) + 1).

Since µ is q-homogeneous on (X, θ) and θ ∈ J (X, d), µ is a doubling measure on
(X, d). Therefore

µ(Bv) & µ
(
Bd(π1(v), C3a

−π2(v))
)
≥ µ(Bθ(π1(vi), θ(π1(vi), wi))). (4.19)

Since d(π1(vi), π1(vi+1))/d(π1(vi), wi) ≤ 4L−1λa−k

θ(π1(vi), π1(vi+1)) ≤ θ(π1(vi), wi)η
(
4L−1λa−k

)
for all i = 1, . . . , N − 1. (4.20)

Pick k0 ∈ N large enough so that

c1η
(
4L−1λa−k

)
≤ 1. (4.21)

Let k ≥ k0. Since µ is a q-homogeneous measure on (X, θ) and Id : (X, d)→ (X, θ) is an
η-quasisymmetry, we have

N∑
i=1

ρv(vi) =
N∑
i=1

(
µ(Bvi)

µ(Bv)

)1/q

&
N−1∑
i=1

(
µ(Bθ(π1(vi), c1θ(π1(vi), π1(vi+1)))

µ (Bθ(π1(vi), θ(π1(vi), wi)))

)1/q

(by (4.16) and (4.17))

&
N−1∑
i=1

θ(π1(vi), π1(vi+1))

θ(π1(vi), wi)
(by (4.21) and q-homogeneity of µ in (X, θ))

&
N−1∑
i=1

θ(π1(vi), π1(vi+1))

θ(π1(v), π(vN))
(since d(π1(vi), wi) . d(π1(v), π1(vN)))

&
θ(π1(v1), π(vN))

θ(π1(v), π(vN))
& 1

(by triangle inequality and d(π1(v1), π(vN)) & d(π1(v), π(vN))).

This completes the proof of (4.13), where c > 0 depends only on η, q-homogeneity con-
stants of µ and λ, a, L. �

Proof of Theorem 1.2. By Proposition 4.3, it suffices to consider the critical exponent
a ≥ λ ≥ 6, where the maximal a−n separated subsets are increasing (similar to the
definition of hyperbolic filling).

The inequality dimCA(X, d) ≤ CE(X, d) follows from the same argument as the proof
of dimARC(X, d) ≤ CE(X, d) in [Car, Theorem 1.3] where the use of [Car, Theorem 1.2]
is replaced with Theorem 3.4. This yields the inequality

dimCA(X, d) ≤ inf{dimA(X, θ) : θ ∈ Jp(X, d)} ≤ CE(X, d). (4.22)
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So it suffices to show CE(X, d) ≤ dimCA(X, d). Let p > dimCA(X, d). We consider a
hyperbolic filling S of (X, d) with parameters a ≥ λ ≥ 6. Then by Theorem 3.1, for any
q ∈ (dimCA(X, d), p), there exists θ ∈ J (X, d) and a q-homogeneous measure µ on (X, θ).

Next, we show the following estimate: there exists C > 0, k0 ∈ N such that

Modp (Γk,L(v)) ≤ Ca−kα(p−q) for any v ∈ S, k ∈ N with k ≥ k0. (4.23)

Let ρv : Sπ2(v)+k → [0,∞) be as given in Lemma 4.5. By Lemma 4.5, it suffices to estimate∑
w ρv(w)p.

To this end, we first obtain an upper bound on ρv(w). For any v ∈ S, let
w ∈ Sπ2(v)+k such that w ∈ γ for some (v1, . . . , vN) = γ ∈ Γk,L(v). Note that
d(π1(w), π1(v1)) ∨ d(π1(w), π1(vN)) ≥ 1

2
d(π1(v1), π1(vN)) ≥ (L − 1)a−π2(v)/2. Therefore

there exists a sequence w = x0, . . . , xM so that d(x0, xM) ≥ (L − 1)a−π2(v). Choose
k1 ∈ N such that (L − 1)a−k1 < 1

4
. By the volume doubling property of µ on (X, d), we

have µ(Bv) & µ(B(π1(v), 2La−π2(v))) & µ(B(π1(w), (L − 1)a−π2(v)/2)). For all k ≥ k1, by
Lemma 4.4, we have

µ(Bw)

µ(Bv)
.

µ(Bw)

µ(B(π1(w), (L− 1)a−π2(v)/2))
≤ Ca−αk for all v ∈ S, w ∈ γ, γ ∈ Γk,L(v),

(4.24)
where C, α only depends on λ, a, L, and the doubling constant of µ in (X, d). Since µ is
a doubling measure, we have∑

w∈Sπ2(v)+k

ρv(w)q ≤
∑

w∈Sπ2(v)+k,
π1(w)∈B(π1(v),(L+1)a−π2(v))

µ(Bw)

µ (Bd(π1(v), (L+ 2)a−π2(v)))

.
∑

w∈Sπ2(v)+k,
π1(w)∈B(π1(v),(L+1)a−π2(v))

µ(Bd(π1(w), a−π2(w)/2))

µ (Bd(π1(v), (L+ 2)a−π2(v)))

(since µ is doubling)

. 1 (since Bd(π1(w), a−π2(w)/2)) pairwise disjoint). (4.25)

By Lemma 4.5, there exists c > 0, k0 ∈ N such that c−1ρv ∈ Adm(Γk,L(v)) for al k ≥ k0.
Hence by (4.24) and (4.25), we have

Modp(Γk,L(v)) .
∑
w

ρv(w)p ≤
(

sup
w
ρv(w)

)p−q∑
w

ρv(w)q . a−kα(p−q) for all k ≥ k0.

This concludes the proof of (4.23) and hence we obtain Mp,k(L) . a−kα(p−q) for all k ≥ k0.
This shows Mp(L) = 0 and hence CE(X, d) ≤ p for all p > dimCA(X, d). This along with
(4.22) concludes the proof. �

One might wonder if the assumption dimA(X, d) < ∞ (or equivalently, (X, d) is a
doubling metric space) in Theorem 1.2 is necessary. To this end, we present the following
example.
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Example 4.6. Let X denote the set of all sequences (xi)i∈N such that xi ∈ {1, 2, . . . , i};
that is, X =

∏∞
i=1{1, . . . , i}. We define a metric on X by setting

d((xi)i∈N, (yi)i∈N) =

{
0 if xi = yi for all i ∈ N,

2−j if j = min{k : xk 6= yk} <∞.

It is easy to see that (X, d) is a compact, ultrametric space. Since every open ball of
radius 2−k has k+ 1 distinct points with mutual distance of at least 2−k−1 for each k ∈ N,
we have

dimA(X, d) =∞. (4.26)

On the other hand, consider a, λ, L > 1, Xk,Sk as given in Definition 4.1. For any v ∈ Sn
and any γ = (v1, . . . , vN) ∈ Γk,L(v), since (X, d) is an ultrametric space, we have

(L− 1)a−n ≤ d(π1(v1), π1(vN)) ≤ max
1≤i≤N−1

d(π1(vi), π1(vi+1)) < 2λa−n−k.

Therefore for all k large enough so that a−k ≤ L−1
2λ

, we have Γk,L(v) = ∅ and hence
Mp,k(L) = 0 for all p > 0 and k large. This implies CE(X, d) = 0. Therefore by (4.26),
we have

dimCA(X, d) =∞ 6= 0 = CE(X, d).

Therefore the assumption that (X, d) is a doubling metric space is necessary in Theorem
1.2.

We conclude with some questions about the closely related notion of conformal (Haus-
dorff) dimension. Recall that the conformal (Hausdorff) dimension dimCH(X, d) is defined
as

dimCH(X, d) = inf{dimH(X, θ) : θ ∈ J (X, d)},
where dimH(X, θ) denotes the Hausdorff dimension of (X, θ). Does the equality

dimCH(X, d) = inf{dimH(X, θ) : θ ∈ Jp(X, d)}

always hold? Theorem 1.2 shows a similar result for the Ahlfors regular conformal di-
mension. It is also interesting to know for which metric spaces does dimCH(X, d) =
dimCA(X, d) hold? It is easy to see that dimCH(X, d) ≤ dimCA(X, d). One might expect
that for ‘self-similar sets’ like the standard Sierpinski carpet dimCH(X, d) = dimCA(X, d)
holds. This seems to be a difficult problem since ‘self-similarity’ is not a quasisymmetry
invariant. It is not known whether the equality dimCH(X, d) = dimCA(X, d) holds even
for the standard Sierpinski carpet.
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[HP09] P. Häıssinsky, K. M. Pilgrim, Coarse expanding conformal dynamics. Astérisque
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