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DISTANCE BETWEEN WALKS ON ASSOCIATED GRAPHS

NISHANT CHANDGOTIA AND BRIAN MARCUS

Let H be a finite connected undirected graph and H2
walk be the graph of

bi-infinite walks on H; two such walks {xi }i∈Z and { yi }i∈Z are said to be
adjacent if xi is adjacent to yi for all i ∈ Z. We consider the question: Given
a graph H, when is the diameter (with respect to the graph metric) of H2

walk
finite? Such questions arise while studying mixing properties of hom-shifts
(shift spaces which arise as the space of graph homomorphisms from the
Cayley graph of Zd with respect to the standard generators to H) and are
the subject of this paper.

1. Introduction

Let A be a finite set called the alphabet. A shape is a finite subset of Zd and a pattern
is a function from a shape to the alphabet A. Given a finite set of patterns F called
a forbidden list, a shift of finite type (SFT) XF ⊂AZd

is the set of configurations in
which patterns from F and their translates do not appear. There is a natural topology
on XF coming from the product of the discrete topology on A making it a compact
metrisable space; Zd acts on it by translation of configurations making it a dynamical
system. The study of SFTs for d ≥ 2 is rife with numerous undecidability issues. It
is not even decidable if an SFT is nonempty [Berger 1966]. It follows immediately
that most nontrivial properties of SFTs are undecidable (Proposition 3.2). In this
paper we study an important class of SFTs called hom-shifts, for which, a priori,
many such issues do not arise.

By Zd we will mean both the group and its Cayley graph with respect to standard
generators. Given any SFT, XF , we can assume by a standard recoding argument
that XF is in fact a nearest neighbour SFT (possibly for a different alphabet A),
meaning F consists of patterns on edges and vertices of Zd. Let Hom(G,H) denote
the set of all graph homomorphisms from G to H. An SFT X is called a hom-shift if
X =Hom(Zd ,H) for some graph H; it is denoted by Xd

H. Alternatively, a hom-shift
can be described as a nearest neighbour SFT which is “symmetric” and “isotropic”,
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that is, if v,w∈A are forbidden to sit next to each other in some coordinate direction,
then they are forbidden to sit next to each other in all coordinate directions. It
follows that a hom-shift Xd

H is nonempty if and only if H has at least one edge. An
introduction to SFTs and hom-shifts can be found in Section 2.

Many important SFTs arise as hom-shifts like the hard square shift and the
n-coloured chessboard. In this paper we study certain mixing properties of hom-
shifts: topological mixing, block-gluing and strong irreducibility and relate them to
some natural questions in graph theory. The mixing conditions studied in this paper
are introduced in Section 3. For further background consider [Boyle et al. 2010].

An SFT X is said to be topologically mixing (or just mixing) if any two patterns
appearing in X can coappear in a configuration in X provided the corresponding
shapes are far enough apart (the distance depending on the patterns). Clearly, a
hom-shift Xd

H is not mixing if H is bipartite; the pattern on any partite class of
Zd is mapped into a partite class of H. It turns out that this is essentially the only
obstruction. We prove in Proposition 3.1 that a hom-shift Xd

H is mixing if and
only if H is a connected undirected graph which is not bipartite; further if H is
bipartite then it still satisfies a similar mixing condition but we may need to translate
one of the two patterns by a unit coordinate vector. In the heart of the analysis is
the following simple idea: we say that two finite walks, {vi }

n
i=1 and {wi }

n
i=1, are

adjacent if vi is adjacent to wi for all i . We show that for all n and finite connected
graphs H, the graph of finite walks of length n is connected.

However we find that the diameter of the graph of finite walks on a graph H of
length n might increase with n. Whether the diameter remains bounded or not relates
to another important mixing property called the phased block-gluing property: we
say that an SFT X is block-gluing if there is an n ∈ N such that any two patterns
on rectangular shapes in X can coexist in a configuration in X provided that they
are separated by distance n. Strong irreducibility (SI) is a similar (though a much
stronger) mixing property where there is no restriction on the shape of the patterns.

Again we observe that if the graph H is bipartite then Xd
H is neither block-gluing

nor SI. To remedy the situation we introduce the phased block-gluing and the
phased SI properties in Section 4 which are similar to the usual block-gluing and SI
properties but there is a fixed finite set S⊂Zd by elements of which we are allowed
to translate one of the two patterns. We prove in Propositions 4.1 and 4.2 that if H
is not bipartite then if Xd

H is phased block-gluing it is block-gluing, and if Xd
H is

phased SI then it is SI. Further if H is bipartite and Xd
H is phased block-gluing or

phased SI then the set S can be chosen to be the origin and any of the coordinate
unit vectors. This is done by relating the mixing conditions with some natural graph
theoretic questions.

The study of the phased block-gluing property for the d-dimensional shift space
Xd
H relates to a natural graph structure on Xd−1

H , namely, x, y ∈ Xd−1
H are said to
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be adjacent if xEi is adjacent to yEi for all Ei in Zd−1. Denote the graph thus obtained
by Hd

walk. In Proposition 4.1 we prove that Xd
H is phased block-gluing if and only

if the diameter of Hd
walk is finite.

It can be proved using the ideas of graph folding in [Nowakowski and Winkler
1983; Brightwell and Winkler 2000] that if H is a tree then the space Xd

H is phased SI.
This turns out to be a characterisation for the phased SI property for a large class
of graphs: a graph is called four-cycle free if it is connected, it has no self-loops
and the four-cycle, C4, is not a subgraph. In Section 5 we prove for four-cycle
free graphs H that Xd

H is phased block-gluing/phased SI if and only if H is a tree.
Surprisingly the proof goes via lifts to the universal cover of the graph; in fact
following [Wrochna 2015] we prove the results for a more general class of graphs
called the four-cycle hom-free graphs (defined in Section 5). In Section 5A we
discuss why this characterisation fails when the four-cycle hom-free restriction is
removed. The paper concludes with a long list of open questions (Section 6).

Let us summarise. Results regarding decidability among hom-shifts and shifts
of finite type are Proposition 2.2, Corollary 2.3 and Proposition 3.2; in Sections 6A
and 6G we mention some related open questions. In the proof of Proposition 3.1
and in Proposition 4.1 we reformulate transitivity, mixing and block-gluing in terms
of walks on graphs. Proposition 3.1 gives necessary and sufficient conditions for
transitivity and mixing. Section 5 discusses the mixing properties for hom-shifts
where the corresponding graph is four-cycle hom-free.

We end the introduction with the question which is the cornerstone for this line
of research; this we are unable to address. For a more detailed discussion, look at
Section 6A.

Question. Is it decidable whether a hom-shift is SI/block-gluing?

2. SFTs and hom-shifts

Let A be a finite set which we refer to as the alphabet with the discrete topology;
we give the set AZd

the product topology making it a compact metrizable space. By
Zd we will mean both the Cayley graph of Zd with respect to standard generators
and the group. The elements of AZd

are called configurations while elements of
AB for some finite set B are called patterns. Given a configuration x , let xEi := x(Ei)
and given a pattern a ∈AB and Ei ∈ B, let aEi := a(Ei).

There is a natural action of Zd on AZd
: for all Ei ∈ Zd let

σ
Ei
:AZd

→AZd
given by

(
σ
Ei (x)

)
Ej := xEi+Ej

denote the shift-action. A shift space is a closed set of configurations X ⊂AZd
which

is invariant under the shift-action, meaning σ Ei (X)= X for all Ei ∈ Zd. Alternatively,
it can also be defined using forbidden patterns: a set of configurations X is a shift
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space if and only if there is a set of patterns F such that

X = XF :=
{

x ∈AZd
: patterns from F do not appear in any shift of x

}
.

Look at [Lind and Marcus 1995, Chapter 6] for the proof of the equivalence when
d = 1; the proof is similar in higher dimensions. In a similar fashion the shift map
extends to patterns:

σ
Ei
:AF
→AF−Ei given by

(
σ
Ei (a)

)
Ej := xEi+Ej for F ⊂ Zd and Ej ∈ F −Ei .

Let E0 be the origin and {Eed
1 , Ee

d
2 , . . . , Ee

d
d } denote the standard generators of Zd. We

drop the superscript when it is obvious from the context. Given a, b ∈A we denote
by 〈a, b〉i ∈A{E0,Eei } the pattern

〈a, b〉i
E0
:= a, 〈a, b〉i

Eei
= b.

Let us look at a few examples:

(1) Let A= {0, 1} and F = {〈1, 1〉i : 1≤ i ≤ d}. Then

XF =
{

x ∈ {0, 1}Z
d
: no two appearances of 1 in x are adjacent

}
.

This is called the hard square shift.

(2) Let A= {1, 2, . . . , n} and F = {〈 j, j〉i : 1≤ i ≤ d, 1≤ j ≤ n}. Then

XF =
{

x ∈ {1, 2, . . . , n}Z
d
: adjacent symbols in x are distinct

}
.

This is called the n-coloured chessboard.

(3) Let d = 1, A= {0, 1} and F = {102i−11 : i ∈ Z}. Then

XF =
{

x ∈ {0, 1}Z : the separation between successive 1s is even
}
.

This is called the even shift.

Note that in the hard square shift the forbidden list F consists of d elements
while in the even shift the forbidden list F consists of infinitely many elements. It
can in fact be proven that F cannot be chosen finite for the even shift.

A shift space X is called a shift of finite type (SFT) if there exists a finite set of
forbidden patterns F such that X = XF . Thus the hard square shift is an SFT while
the even shift is not an SFT. Further if F can be chosen to be a set of patterns on
edges and vertices of Zd then X is called a nearest neighbour shift of finite type.
Any SFT can be “recoded” into a nearest neighbour SFT: Given shift spaces X
and Y, a continuous map f : X→ Y which commutes with the shift-action, that is,
f ◦ σ Ei = σ Ei◦ f is called a sliding block code. A factor map is a sliding block code

which is surjective while a conjugacy is a sliding block code which is bijective.
The inverse of a conjugacy is also a conjugacy; thus conjugacies determine an
equivalence relation. Any shift space conjugate to an SFT is also an SFT. Further
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0 1

Figure 1. Graph for the hard square shift.

given an SFT, X, a simple construction gives us a nearest neighbour SFT, Y , which
is conjugate to X [Schmidt 1998].

A periodic configuration is a configuration x ∈AZd
such that there exists some

n ∈ N such that σ nEei (x) = x for all 1 ≤ i ≤ d. Some fundamental properties of
nearest neighbour SFTs are undecidable for d ≥ 2; for instance there is no algorithm
to decide, given a finite set F , whether XF is nonempty [Berger 1966; Robinson
1971]. Let us review a few salient features of the proof: Fix d ≥ 2. Given a Turing
machine T there is a finite alphabet AT and a finite forbidden list FT such that Xd

FT

is nonempty if and only if T does not halt starting on the empty input. Since the
halting problem for Turing machines is undecidable, the nonemptiness problem for
SFTs (and hence nearest neighbour SFTs) is also undecidable. Further Xd

FT
has no

periodic configurations; this shall be useful later.
All the graphs H in this paper are undirected, without multiple edges and have

no isolated vertices.
X ⊂ AZd

is called a hom-shift if there exists a finite undirected graph H such
that X = Hom(Zd ,H). Alternatively, these are exactly the nearest neighbour SFTs
which are symmetric and isotropic, meaning nearest neighbour SFTs which are
invariant under the automorphism group of Zd (as a graph). These correspond
to vertex shifts in d = 1 defined by an undirected graph [Lind and Marcus 1995,
Chapter 2].

For an undirected graph H (finite or not) we denote

Xd
H := Hom(Zd ,H).

Clearly Xd
H is nonempty if and only if H is nonempty. Let Kn denote the complete

graph on n vertices {1, 2, 3, . . . , n}. Then Xd
Kn

is the n-coloured chessboard. If H
is the graph given by Figure 1 then Xd

H is the hard square shift.
We shall frequently use the cartesian product on graphs: Given graphs H1 =

(V1, E1) and H2 = (V2, E2), H1�H2 is the graph with vertex set V1 × V2 where
(v1, v2) ∼H1�H2 (w1, w2) if and only if v1 = w1 and v2 ∼H w2 or v1 ∼H w1 and
v2 = w2. By � r

j=1H j we mean the graph H1�H2� · · ·�Hr .
For a shift space X ⊂AZd

, the language for X is given by

L(X) := {a ∈AB
: N ⊂ Zd is finite and there exists x ∈ X such that x |B = a}.

These are called the set of globally allowed patterns in X. On the other hand, if
the shift space X is given by a forbidden list F, then a pattern a is called locally
allowed if no element of F appears in the shifts of a. For shifts of finite type, it
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is not decidable whether a locally allowed pattern is globally allowed [Robinson
1971]. For hom-shifts, it is in fact decidable; this follows from Proposition 2.1.

A shape is a finite subset of Zd. For a shape A⊂Zd we write LA(X) :=L(X)∩AA.
We will often denote an element a ∈AA by 〈a〉A instead to emphasise the domain
of the pattern. By a rectangular shape A⊂ Zd we mean that A=� d

j=1 I j for some
finite intervals I j ⊂ Z. A rectangular pattern in X is a pattern in LA(X) for some
rectangular shape A. The following proposition implies that periodic configurations
are dense in hom-shifts.

Proposition 2.1 (extension of (possibly infinite) rectangular patterns). Let H be
an undirected graph and A = � d

t=1 It where the It are intervals in Z. Then for
all homomorphisms a ∈ Hom(A,H) there exists a configuration x ∈ Xd

H such that
x |A = a. If A is a finite set then x can be chosen to be periodic.

Here is the idea: Let us first observe this for a finite A. If any of the side-lengths
of A is 1 then we extend it to a pattern ã on a bigger rectangular shape by “stacking
shifts” of the pattern a. Then we reflect the pattern obtained about its faces to obtain
a pattern b on a still bigger rectangular shape and finally tile Zd by this new pattern
to obtain a periodic configuration. Some of the details are provided in part (2) of
the proof of [Chandgotia 2017, Lemma 8.2]. Although the proof there is for the
case when H is a tree, it carries forward without any change to our context.

Now if A is an (infinite) rectangular shape then by compactness of shift spaces
and a standard limiting argument (taking a sequence of rectangular patterns which
approximate the given pattern and considering the corresponding sequence of
configurations extending them), the result for finite rectangular patterns implies the
proposition.

In the following, by a given nearest neighbour SFT X, we mean a given finite
list of patterns F on edges and vertices of Zd such that X = XF .

Proposition 2.2. Fix d ≥ 2. Let C be a set of SFTs for which periodic points are
dense for all X ∈ C. It is undecidable whether an SFT is conjugate to some X ∈ C.

Proof. Let X ∈ C. Recall the properties of the SFT XFT , which was constructed
given a Turing machine T. We can assume (possibly after a change in alphabet
for X ) that the underlying alphabets for X and XFT are disjoint for all Turing
machines T. Then X ∪XFT is a nearest neighbour SFT for every Turing machine T ;
since the XFT do not have periodic points, periodic points are dense in X ∪ XFT if
and only if XFT is empty.

We claim that this implies X ∪ XFT is conjugate to a member of C if and only if
XFT is empty. Clearly, if XFT is empty then X ∪ XFT ∈ C. Now suppose XFT is
not empty. Since it does not have periodic points, periodic points are not dense in
X ∪ XFT and hence it cannot be conjugate to a member of C.
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Thus it is undecidable whether X ∪ XFT is conjugate to an element of C proving,
more generally, that it is undecidable whether a nearest neighbour SFT is conjugate
to an element of C. �

Corollary 2.3. It is undecidable whether a shift space X is conjugate to a hom-shift
for d ≥ 2.

This follows immediately from Propositions 2.1 and 2.2.

3. Some mixing conditions for hom-shifts

In this section we introduce some topological mixing conditions for shift spaces
in d ≥ 2. This introduction will be far from comprehensive; for more background
consider [Boyle et al. 2010].

Given A, B ⊂ Zd let

d∞(A, B) := min
Ei∈A, Ej∈B

|Ei − Ej |∞ where | · |∞ is the l∞ norm on Rd .

A shift space X is topologically mixing or just mixing if for all 〈a〉A, 〈b〉B ∈L(X)
there exists n ∈N such that for all Ei ∈Zd, |Ei |∞≥ n there is x ∈ X satisfying x |A = a
and σ Ei (x)|B = b. A shift space X is transitive if for all 〈a〉A, 〈b〉B ∈ L(X) there
exists x ∈ X and Ei ∈ Zd such that x |A = a and σ Ei (x)|B = b.

In this section we shall prove the following result:

Proposition 3.1. Let d ≥ 2 and H be a finite undirected graph. Then Xd
H is

transitive if and only if H is connected. Further it is mixing if and only if H is
connected and not bipartite.

Before we proceed with the proof, we shall consider a few more standard mixing
conditions. A stronger mixing property which is also the main theme of this paper
is the block-gluing property: a shift space X is said to be block-gluing if there
exists an n ∈N such that for all rectangular patterns 〈a〉A, 〈b〉B ∈ L(X) satisfying
d∞(A, B) ≥ n there exists x ∈ X such that x |A = a and x |B = b. A still stronger
mixing condition is the following: a shift space X is called strongly irreducible (SI)
if there exists n ∈ N such that for all 〈a〉A, 〈b〉B ∈ L(X) satisfying d∞(A, B)≥ n
there exists x ∈ X such that x |A = a and x |B = b.

The hard square shift X is SI for n=2: given shapes A, B such that d∞(A, B)≥2
and a ∈ LA(X), b ∈ LB(X), then x ∈ X given by

xEi :=


aEi if Ei ∈ A,
bEi if Ei ∈ B,
0 otherwise

satisfies x |A = a and x |B = b. We will give a large class of examples in this paper
of hom-shifts which are block-gluing and of hom-shifts which are mixing but not
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block-gluing (Theorem 5.3). We will also give an example of a hom-shift which is
(phased) block-gluing but not (phased) SI in Section 5A; the phased properties are
introduced in Section 4.

Proposition 3.2. Let d ≥ 2. It is undecidable whether an SFT is transitive/mixing/
block-gluing/SI.

The proof is very similar to the proof of Proposition 2.2. Let X be the hard
square shift and consider for every Turing machine T the SFT, XFT (with alphabet
disjoint from {0, 1}); it is undecidable whether XFT is empty. Further X ∪ XFT is
transitive/mixing/block-gluing/SI if and only if XFT is empty; thus the proposition
follows.

Now let us return to Proposition 3.1. Suppose H is not connected. Let H =
H1∪H2 where H1 and H2 are disjoint. Then Xd

H = Xd
H1
∪ Xd

H2
where Xd

H1
and Xd

H2

are nonempty shift spaces over disjoint alphabets proving that Xd
H is not transitive.

Also if H is bipartite then Xd
H is not mixing since for a given x ∈ Xd

H and all even
vertices Ei ∈ Zd, the xEi belong to the same partite class.

To prove the other direction we will use some auxiliary constructions; the idea
used for the proof of this proposition will be useful later as well.

A walk p in a graph H is a (finite, infinite or bi-infinite) sequence of vertices
{pi } in H satisfying pi ∼H pi+1 for all i . A walk of length k is a finite walk
p = (p0, p1, . . . , pk); let |p| denote the length of p. Denote by [i, j] the induced
subgraph of Z on {i, i + 1, . . . , j}. For every n ∈ Z+ and d ≥ 2 let

Bd−1
n :=� d−1

j=1 [−n, n],

that is, the l∞ ball of radius n in Zd−1. Consider the graph

Hd
n,walk :=

(
Hom(Bd−1

n ,H), Ed
n,walk

)
where

Ed
n,walk :=

{
(x, y) : xEi ∼H yEi for all Ei ∈ Bd−1

n
}
.

As with homotopies in algebraic topology, there is a walk from p to q in Hd
n,walk

of length k if and only if there is a graph homomorphism a : Bd−1
n �[0, k] →H

such that aEi,0 = pEi and aEi,k = qEi for all Ei ∈ Bd−1
n . We will use this correspondence

frequently throughout the paper. Connectivity of the graph Hd
n,walk is related to the

transitivity/mixing property via the following lemma:

Lemma 3.3. Let d ≥ 2 and H be a finite undirected graph. If Hd
n,walk is connected

for all n ∈ Z+ then Xd
H is transitive. Further if Hd

n,walk is connected and not
bipartite for all n ∈ Z+ then Xd

H is mixing.

Proof. Let A, B ⊂ Zd be finite sets and 〈a〉A, 〈b〉B ∈ L(Xd
H) be given and suppose

Hd
n,walk is connected. We need to prove that there exists some Ei ∈ Zd such that
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x |A = a and (σ Ei (x))|B = b. By shifting the patterns if necessary and extending
them to Bd

n for some large enough n > 1 we can assume A = B = Bd
n . By the

hypothesis we know that Hd
n,walk is connected so there is a walk of length k for some

k ∈ N from a|Bd−1
n �{n} to b|Bd−1

n �{−n}; here the graphs Bd−1
n �{−n} and Bd−1

n �{n}
are identified with Bd−1

n . As observed earlier, this gives us a homomorphism
c : Bd−1

n �[n, n+ k] → H such that cEi,n = aEi,n and cEi,n+k = bEi,−n . “Pasting
together” the configurations a and b to c we get a homomorphism

l : Bd−1
n �[−n, 3n+ k] →H

with l|Bd
n
= a and

l|Bd
n+(2n+k)Eed = (σ

−(2n+k)Eed (b)).

By Proposition 2.1 we see that Xd
H is transitive.

For mixing, assume that Hd
n,walk is connected and not bipartite. As before, let

〈a〉Bd
n
, 〈b〉Bd

n
∈ L(Xd

H). Choose an integer k such that for all a′, b′ ∈Hd
n,walk there

is a walk from a′ to b′ of length r for all r ≥ k. Let Ei = (i1, i2, . . . , id) such
that |Ei |∞ ≥ k + 2n; without the loss of generality assume id ≥ k + 2n. Extend
a and b periodically to get extensions ã, b̃ on Zd−1�[−n, n]. There is a walk in
Hd

n,walk from ã|Bd−1
n �{n} to (σ−Ei (b̃))|Bd−1

n �{−n+id }
of length id − 2n; thus we obtain

a homomorphism l ′ : Bd−1
n �[−n, n+ id ] →H such that

l ′|Bd
n
= ã|Bd

n
and l ′|Bd−1

n �[−n+id ,n+id ]
= (σ−

Ei (b̃))|Bd−1
n �[−n+id ,n+id ]

.

By periodically extending l ′ we get a homomorphism l̃ : Zd−1�[−n, n+ id ] →H
such that

l̃|Zd−1�[−n,n] = ã and (σ
Ei (l̃))|Zd−1�[−n,n] = b̃.

By Proposition 2.1 the proof is complete. �

Proof of Proposition 3.1. Fix d ≥ 2. We have already shown that if H is not
connected then Xd

H is not transitive. Let H be a connected graph. By Lemma 3.3
we need to prove that the graph Hd

n,walk is connected for all n∈Z+. When n=0, then
Bd

n consists of a single vertex; the connectivity of Hd
0,walk is exactly the connectivity

of the graph H. Now fix n ≥ 1. The argument will follow by induction on d.

Base case: Let p, q ∈H2
n,walk. Consider a walk r (say of length k) in H from pn

to q−n . Let s : [−n, 3n+ k] →H be the walk “joining” p, r and q; formally, let

si :=


pi if i ∈ [−n, n],
ri−n if i ∈ [n, n+ k],
qi−2n−k if i ∈ [n+ k, 3n+ k].

By “stacking together the shifts” of the pattern s we get a walk in H2
n,walk from

p to q; formally, let pi
∈ H2

n,walk be given by pi
t := si+t for t ∈ [−n, n] and
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i ∈ [0, 2n+ k]. Then p0
= p, p2n+k

= q and

pi
t = si+t ∼H si+t+1 = pi+1

t ,

proving that pi
∼H2

n,walk
pi+1.

The induction step: Let’s assume the conclusion for some d≥2. Let p, q ∈Hd+1
n,walk.

By the induction hypothesis there exists a walk r0, r1, . . . , r k in Hd
n,walk from

p|[−n,n]d−1�{n} to q|[−n,n]d−1�{−n} for some k. Let

s : [−n, n]d−1�[−n, 3n+ k] →H

be a graph homomorphism obtained by “joining” p, r0, r1, . . . , r k and q; formally,
let

s Ej,i :=


p Ej,i if i ∈ [−n, n],

r i−n
Ej

if i ∈ [n, n+ k],

q Ej,i−2n−k if i ∈ [n+ k, 3n+ k],

for all Ej ∈ [−n, n]d−1. As in the base case, by “stacking together the shifts” of the
pattern s we get a walk from p to q in Hd+1

n,walk. This proves that Xd
H is transitive.

If H is bipartite with partite classes V1, V2 and x ∈ Xd
H then xE0 ∈ V1 if and only

if xEi ∈ V1 for all even vertices Ei ∈ Zd ; thus Xd
H isn’t mixing. For the other direction

assume that H is connected and not bipartite. By the first part of the proof the
graph Hd

n,walk is connected. Further since H is not bipartite it has an odd cycle.
Thus one obtains an odd cycle in Hd

n,walk for all n; hence it is also not bipartite. By
Lemma 3.3, the proof is complete. �

Observe that the proof of Proposition 3.1 gives us a bound on the diameter in
the graph metric of Hd+1

n,walk given the diameter of Hd
n,walk. Specifically

(3-1) diam(Hd+1
n,walk)≤ 2n+ diam(Hd

n,walk)

for all d ≥ 0; here H0
n,walk is interpreted as the graph H. We are interested in cases

where diam(Hd+1
n,walk) is uniformly bounded for all n.

The following corollary follows from arguments in the proofs of Lemma 3.3 and
Proposition 3.1.

Corollary 3.4. Let H be a finite undirected graph. The following are equivalent:

(1) H is connected.

(2) Xd
H is transitive for some d ∈ N.

(3) Xd
H is transitive for all d ∈ N.

(4) Hd
n,walk is connected for all n and d.

(5) Hd
n,walk is connected for some n and d.
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Let H be a bipartite connected graph with partite classes V1, V2. Then Xd
H =

X1 ∪ X2 where
X i := {x ∈ Xd

H : xE0 ∈ Vi }.

To prove that if H is connected and not bipartite then Xd
H is mixing, note that

the only place we used the fact that the graph H is not bipartite is to conclude
that Hd

n,walk is also not bipartite. If H is connected and bipartite then Hd
n,walk is

also connected and bipartite; there exists K ∈ N such that for any k > K and
p, q ∈Hd

n,walk there is a walk from p to q of length either k or k + 1. It follows
that X1 and X2 are mixing SFTs for the (2Z)d action. So we have the following
proposition:

Corollary 3.5. If H is a bipartite connected graph then Xd
H is a disjoint union of

two conjugate mixing SFTs with respect to the (2Z)d action.

This is reminiscent of the case for d = 1, where if X is an irreducible SFT of
period p then it can be written as a disjoint union of p conjugate mixing SFTs with
respect to the pZ action; see [Lind and Marcus 1995, Exercise 4.5.6]. We shall
state similar conclusions in Corollary 4.3 for some stronger mixing properties. We
remark that the group (2Z)d (which is of index 2d in Zd) can be replaced by any
subgroup contained in the same partite class as E0 in these results. However for the
ease of notation and understanding, we will work with the group (2Z)d instead.

4. The phased block-gluing and SI property for hom-shifts

From here on the graph H is connected unless stated otherwise. The graph metric
on H is denoted by dH. The block-gluing property is too restrictive: if H is bipartite
then Xd

H is not even mixing. With this in view, we define the following:
A shift space X is said to be phased block-gluing if there exists an n ∈ N and a

finite set S ⊂ Zd such that for all rectangular patterns 〈a〉A, 〈b〉B ∈ L(X) satisfying
d∞(A, B) ≥ n there exists x ∈ X such that x |A = a and σ Ei (x)|B = b for some
Ei ∈ S. The set S will be called a gluing set of X and n will be called a gluing
distance. Observe that although the phased block-gluing property is defined for finite
rectangular patterns 〈a〉A, 〈b〉B , it immediately applies (by using the compactness
of shift spaces) to infinite rectangular patterns as well.

From here on fix d ≥ 2 unless mentioned otherwise. We will now construct
some auxiliary graphs which will be useful in the study of the phased block-gluing
property. Let Hd

walk = (X
d−1
H , Ed

walk) be the graph where

Ed
walk =

{
(x, y) : xEi ∼H yEi for all Ei ∈ Zd−1}.

Given symbols v,w we denote by (v,w)∞,d−1
∈ {v,w}Z

d−1
the checkerboard

configuration given by
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(v,w)
∞,d−1
Ei

:=

{
v if Ei is in the same partite class as E0,
w otherwise.

Similarly v∞,d−1 is the constant configuration given by

v
∞,d−1
Ei

:= v for all Ei ∈ Zd−1.

Let us look at a few examples.

(1) If H is a graph with a single edge and vertices v,w then Xd−1
H consists only

of the two checkerboard patterns (v,w)∞,d−1 and (w, v)∞,d−1 which are
connected to each other in Hd

walk.

(2) Let H be the graph in Figure 1 (the graph for the hard square shift). Since
0, 1∼H 0, for all x ∈ Xd−1

H ,
x ∼Hd

walk
0∞,d−1.

In general, if H is a graph with a vertex ? such that ?∼H v for all v∈H (in other
words, if the hom-shift Xd−1

H has a so-called safe symbol) then x ∼Hd
walk
?∞,d−1

for all x ∈ Xd−1
H .

The usual graph metric on Hd
walk is denoted by dwH. Further we say dwH(x, y) :=∞

if there is no finite walk from x to y. The diameter of Hd
walk is denoted by

diam(Hd
walk) := sup

x,y∈Hd
walk

dwH(x, y).

The diameter of the graph Hd
walk measures the maximum distance required to

transition between two configurations in Xd−1
H . Recall the graphs Hd

n,walk. They
may be thought to “approximate” the graph Hd

walk; in fact it follows easily that

diam(Hd
walk)=∞ if and only if lim

n→∞
diam(Hd

n,walk)=∞.

The proof is left to the reader. Look also at Section 6C.
As mentioned previously with respect to the graphs Hd

n,walk, there is a correspon-
dence between walks x = p0, p1, . . . , pk

= y in Hd
walk from x to y of length k and

x̃ ∈ Hom(Zd−1�[0, k],H) satisfying x̃Ei,0 = xEi and x̃Ei,k = yEi . We will use this and
similar correspondences throughout the paper.

While the graphs Hd
n,walk were useful in analysing the mixing and transitivity of

the hom-shifts Xd
H (as in Proposition 3.1), the graph Hd

walk relates to the phased
block-gluing property by the following proposition:

Proposition 4.1. Let H be a finite, undirected graph. Then:

(1) Xd
H is block-gluing if and only if there exists an n ∈ N such that for all

x, y ∈ Xd−1
H there exists a walk of length n in Hd

walk starting at x and ending
at y.

(2) Xd
H is phased block-gluing if and only if diam(Hd

walk) <∞.
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(3) If H is bipartite and Xd
H is phased block-gluing then the gluing set can be

chosen to be {0, Eei } for all 1≤ i ≤ d.

(4) If H is not bipartite and Xd
H is phased block-gluing then Xd

H is block-gluing.

Proof of Proposition 4.1(1). Suppose that Xd
H is block-gluing with gluing distance n.

Let x, y ∈ Xd−1
H . We can identify them as elements of Hom(Zd−1�{0},H) and

Hom(Zd−1�{n},H) respectively. By the block-gluing property there exists z ∈ Xd
H

for which z|Zd−1�{0} = x and z|Zd−1�{n} = y. Equivalently we have found a walk of
length n in Hd

walk from x to y.
Conversely suppose that for all x, y ∈ Xd−1

H there exists a walk of length n starting
at x and ending at y. Since we can always lengthen such a walk by revisiting a
configuration adjacent to y, it follows that for all x, y ∈ Xd−1

H , m ≥ n, there is a
walk of length m from x to y.

We would like to prove that Xd
H is block-gluing with block-gluing distance n. Let

〈a〉A, 〈b〉B be two rectangular patterns in Xd
H such that d∞(A, B)= m. Using the

symmetry and isotropy in hom-shifts and translating the patterns (if necessary), by
Proposition 2.1 we can assume A⊂Zd−1�[−r, r ] and B⊂Zd−1�[m+r,m+r+k]
for some r, k ∈ N. Consider

ỹ ∈ Hom(Zd−1�[−r, r ],H) and z̃ ∈ Hom(Zd−1�[m+ r,m+ r + k],H)

such that ỹ|A = a and z̃|B = b. Then there exists a walk p0, p1, . . . , pm from
ỹ|Zd−1�{r} to z̃|Zd−1�{m+r} in Hd

walk. Hence we get a homomorphism

x̃ ∈ Hom(Zd−1�[−r,m+ r + k],H)

such that x̃ |Zd−1�[−r,r ] = ỹ and x̃ |Zd−1�[m+r,m+r+k] = z̃. By Proposition 2.1 there
exists x ∈ Xd

H such that x |A = a and x |B = b. �

In the following proof, by | · |1 we mean the l1 metric on Rd.

Proof of Proposition 4.1(2). Suppose that Xd
H is phased block-gluing with gluing

distance n and gluing set S. Choose m ≥ n large enough such that m > |Ei |1 for all
Ei ∈ S. Let x, y ∈ Xd−1

H be given. As before we identify x and y as configurations in
Hom(Zd−1�{0}) and Hom(Zd−1�{m}) respectively. By the phased block-gluing
property there exists z ∈ Xd

H such that z|Zd−1�{0} = x and σ Ei (z)|Zd−1�{m} = y for
some Ei ∈ S. Write Ei = (Ei f , id) where Ei f

∈ Zd−1. Then

z Ej,m+id
= yEj−Ei f for all Ej ∈ Zd−1.

Thus we have obtained a walk from x to σ−Ei
f
(y) in Hd

walk of length m + id . By
using the fact that z′ ∼Hd

walk
σ
Ee d−1

j (z′) for all 1≤ j ≤ d − 1 and z′ ∈ Xd−1
H we get a

walk from σ−
Ei f
(y) to y of length | −Ei f

|1. Thus

diam(Hd
walk)≤max

Ei∈S
(m+ |Ei |1).
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Now let us prove the converse. Suppose diam(Hd
walk) < n <∞. Let 1≤ j ≤ d,

S={E0, Eed
j } and let 〈a〉A, 〈b〉B ∈L(Xd

H) be rectangular patterns such that d∞(A, B)=
m ≥ n+ 1. We can assume A ⊂ Zd−1�[−r, r ] and B ⊂ Zd−1�[m+ r,m+ r + k]
for some r, k ∈ N. Consider

ỹ ∈ Hom(Zd−1�[−r, r ],H) and z̃ ∈ Hom(Zd−1�[m+ r,m+ r + k],H)

such that ỹ|A = a and z̃|B = b. There is a walk of length either m− 1 or m from
ỹ|Zd−1�{r} to z̃|Zd−1�{m+r} since there is always a walk of length 2 from any vertex
in Hd

walk to itself.

Case 1: A walk of length m is found. We get x̃ ∈ Hom(Zd−1�[−r,m+ r + k],H)
such that x̃ |Zd−1�[−r,r ] = ỹ and x̃ |Zd−1�[m+r,m+r+k] = z̃. By Proposition 2.1 there
exists x ∈ Xd

H such that x |A = a and x |B = b.

Case 2: A walk of length m− 1 is found. This is similar to the previous case; just
replace the pattern z̃ by σ−Ee

d
j (z̃). �

Proof of Proposition 4.1(3). Note that we have proved that the phased block-
gluing property for Xd

H implies that diam(Hd
walk) <∞ and that diam(Hd

walk) <∞

implies that Xd
H has the phased block-gluing property where the gluing set S can

be chosen to be {E0, Eei } for 1≤ i ≤ d . Thus, if Xd
H is phased block-gluing then the

gluing set S can be chosen to be {E0, Eei } for 1≤ i ≤ d . �

Proof of Proposition 4.1(4). Suppose H is a finite, undirected graph which is not
bipartite and Xd

H is phased block-gluing. If H is a single vertex with a self-loop
then Hd

walk is a single configuration with a self-loop as well; there is nothing to
prove. If H is not a single vertex with a self-loop then since H is not bipartite there
exist cycles of even and odd length in H and (hence) in Hd

walk. Thus the graph
Hd

walk is aperiodic.
Moreover since Xd

H is phased block-gluing, from Proposition 4.1(2) we know
that Hd

walk has finite diameter. Since Hd
walk is aperiodic and has finite diameter,

from standard arguments (see [Durrett 2010, Lemma 6.6.3]) one can prove that the
adjacency matrix of the graph Hd

walk is primitive, meaning, there exists m ∈N such
that for every x, y ∈ Xd−1

H there exists a walk of length m from x to y in Hd
walk. By

Proposition 4.1(1), the proof is complete. �

In exactly the same way, the phased SI property can also be defined: a shift space
X is said to be phased SI if there exists an n ∈ N and a finite set S ⊂ Zd such that
for all patterns 〈a〉A, 〈b〉B ∈ L(X) satisfying d∞(A, B)≥ n there exists x ∈ X such
that x |A = a and σ Ei (x)|B = b for some Ei ∈ S. S will be called an SI gluing set of
X and n will be called an SI gluing distance.

Proposition 4.2. Let H be a finite, undirected graph. Then:
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(1) If H is bipartite and Xd
H is phased SI, the SI gluing set can be chosen to be

{E0, Eei } for all 1≤ i ≤ d.

(2) If H is not bipartite and Xd
H is phased SI then it is SI.

Since the arguments for the proof of this proposition are similar to those in
the proof of Proposition 4.1, we will not repeat them here. Roughly speaking, in
Proposition 4.1 we obtained the result by translating the question into one about
walks on the auxiliary graphs Hd

walk. For SI we can use the following simple
equivalence instead: Given a set A ⊂ Zd let

∂r A = {Ei ∈ Zd
\ A : |Ei − Ej |1 ≤ r for some Ej ∈ A}.

A nearest neighbour SFT X is SI if and only if there is an N ∈N such that for all
n ≥ N, finite A ⊂ Zd and 〈a〉A, 〈b〉∂n A\∂n−1 A ∈ L(X), there exists x ∈ X such that
x |A = a and x |∂n A\∂n−1 A = b.

As in Corollary 3.5 we can also conclude:

Corollary 4.3. Let H be a bipartite finite undirected graph. If Xd
H is phased block-

gluing/phased SI then Xd
H is a union of two disjoint conjugate SFTs with respect to

the (2Z)d action which are block-gluing/SI respectively.

This follows from the fact that for a phased block-gluing/phased SI hom-shift,
the gluing set/SI gluing set can be chosen to be {0, Eei } for all 1≤ i ≤ d . The proof
is left to the reader.

We will need the following “monotonicity” result:

Proposition 4.4. Let H be a finite undirected graph and d1 < d2. If Xd1
H is not

phased block-gluing/phased SI then Xd2
H is not phased block-gluing/phased SI.

Let us see this for the phased block-gluing property; the proof for the phased SI
property uses similar ideas. Suppose that Xd1

H is not phased block-gluing. Fix n ∈N.
By Proposition 4.1 we know that diam(Hd1

walk)=∞. Thus there exist x, y ∈ Xd1−1
H

such that dwH(x, y) ≥ n. By Proposition 2.1 there exist x1, y1
∈ Xd2−1

H such that
x1
(Ei,E0)
= xEi and y1

(Ei,E0)
= yEi for all Ei ∈ Zd1−1. Now given a walk (if it exists),

x1, x2, . . . , xk
= y1,

from x1 to y1 in Hd2
walk,

x1
|Zd1−1�{E0}, x2

|Zd1−1�{E0}, . . . , xk
|Zd1−1�{E0}

is a walk in Hd1
walk (up to identification of Zd1−1�{E0} with Zd1−1). Hence

dwH(x
1, y1)≥ n.

Since n was arbitrary we have proven that diam(Hd2
walk)=∞ proving that Xd2

H is
not phased block-gluing.
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We end this section with a few minor structural remarks. Let Cn denote the n-
cycle with vertices {0, 1, 2, . . . , n−1}. The phased SI/phased block-gluing property
for transitive hom-shifts is not stable under containment: For instance we will prove
that X2

C3
is not phased block-gluing in Theorem 5.3. However X2

Edge and X2
K4

are
both phased SI [Briceño 2014] where Edge is the induced subgraph on a pair of
vertices in C3 and C3 is isomorphic to an induced subgraph of K4. The mixing
properties are however preserved under certain products:

The tensor product of graphs H1 = (V1, E1) and H2 = (V2, E2), denoted by
H1 ×H2, is the graph with vertex set V1 × V2 and (v1, v2) ∼H1×H2 (w1, w2) if
v1 ∼H1 w1 and v2 ∼H2 w2.

Proposition 4.5. Let H1 and H2 be graphs such that Xd
H1

and Xd
H2

are phased
SI/phased block-gluing. Let H be a connected component of H1×H2. Then Xd

H is
also phased SI/phased block-gluing.

We understand the case of the cartesian product to a much lesser extent and it
might be of interest for future work.

Proof. There are three separate cases to consider: neither H1 nor H2 is bipartite,
exactly one of H1 and H2 is bipartite and finally both H1 and H2 are bipartite. The
proofs for the three cases are similar given the following well known observations: If
H1 and H2 are connected graphs which are not bipartite then H1×H2 is connected
and bipartite. If exactly one of H1 and H2 is bipartite and both are connected
then H1×H2 is also bipartite and connected. If both H1 and H2 are bipartite and
connected then H1×H2 has two graph components, both are connected bipartite
graphs.

Since these three cases are very similar we shall only prove the theorem for
the case where both H1 and H2 are not bipartite. Let Xd

H1
and Xd

H2
be phased

SI (and hence SI given Proposition 4.2). Let (x1, y1), (x2, y2) ∈ Xd
H1×H2

. Let n
be the maximum of the SI gluing distances for Xd

H1
and Xd

H2
. Let A, B ⊂ Zd

such that they are separated by distance n. Then there exists (x, y) ∈ Xd
H1×H2

such that x |A = x1
|A, x |B = x2

|B , y|A = y1
|A and y|B = y2

|B . The proof for the
block-gluing property follows the same idea; we need to restrict to rectangular
shapes A and B. �

Finally we observe that the lack of the block-gluing property is equivalent to the
graph Hd

walk being disconnected:

Proposition 4.6. Let H be a finite undirected graph. Then diam(Hd
walk)=∞ if and

only if Hd
walk is disconnected.

Proof. We will prove the proposition in the case when H is not bipartite; the proof
for the bipartite case is similar and left to the reader. Let diam(Hd

walk)=∞. Then
either Hd

walk is disconnected or for all n∈N there exist configurations xn, yn
∈ Xd−1

H
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such that dwH(x
n, yn) ≥ n. By choosing a large enough subpattern from these

configurations it follows that there exists kn ∈ N and an, bn
∈ Hd

kn,walk such that
the shortest walk from an to bn is of length greater than or equal to n. Since H
is not bipartite, by Proposition 3.1, the hom-shift Xd

H is mixing. Thus there exist
x, y ∈ Xd−1

H such that there exists Ein ∈ Zd−1 satisfying

σ
Ein (x)|Bd−1

kn
= an, σ

Ein (y)|Bd−1
kn
= bn for all n ∈ N.

It follows that dwH(x, y)=∞ implying that Hd
walk is disconnected.

For the other direction, if Hd
walk is disconnected then its diameter is infinite; this

follows from the definition of the diameter. �

5. Phased mixing properties for four-cycle hom-free graphs

We say that an undirected graph H is a four-cycle hom-free graph if for all graph
homomorphisms f : C4→H either f (0)= f (2) or f (1)= f (3). Let us begin by
unravelling the definition.

Proposition 5.1. An undirected graph H is four-cycle hom-free if and only if C4 is
not a subgraph of H and if v ∈H has a self-loop then w1, w2 ∼H v and w1, w2 6= v

implies w1 6∼H w2.

Proof. Let us see the forward direction; the arguments for the backward direction
are similar in nature and left to the reader. Suppose H is four-cycle hom-free. Since
there exists no graph homomorphism f ∈ Hom(C4,H) which is an embedding,
the graph C4 is not a subgraph of H. Now suppose the vertex v ∈ H has a self-
loop, w1, w2 ∼H v and w1, w2 6= v. Consider the map f ′ : C4 → H given by
f ′(0) = f ′(1) := v, f ′(2) := w1, f ′(3) := w2; it is a graph homomorphism if
and only if w1 ∼H w2. But for the map f ′, f ′(0) 6= f ′(2) and f ′(1) 6= f ′(3).
Thus by the four-cycle hom-free property of H it follows that f ′ is not a graph
homomorphism from where it follows that w1 6∼H w2. �

It follows from Proposition 5.1 that a graph H without self-loops is four-cycle
hom-free if and only if it is a four-cycle free graph in the sense of [Chandgotia
2017], that is, C4 is not a subgraph of H. It was observed in [Chandgotia 2017] that
a homomorphism from Zd to H can be lifted to the universal cover Huni (defined
below). This includes graphs H which are trees and cycles Cn for n 6=4. A particular
case is that of n = 3; Xd

C3
is the space of proper 3-colourings of Zd.

This condition was studied in [Wrochna 2015] in the context of reconfiguration
problems; we remark that the so-called fundamental groupoid in that paper is
intimately related to the universal cover of H. If H= C3 then the lifts correspond
to the so-called height functions [Lieb 1967].
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In addition it follows from Proposition 5.1 that the graph for the hard square
shift (Figure 1) satisfies the hypothesis. For trees with loops, we refer to [Briceño
and Pavlov 2017, Proposition 8.1 and its corollaries] for related results.

In this section we describe a procedure for deciding the mixing conditions of Xd
H

for a four-cycle-hom-free graph. For this we require a notion of folding in graphs:
We say that a vertex v folds into w if NH(v) ⊂ NH(w). In this case H \ {v} is
called a fold of the graph H. A graph is called stiff if it does not have any nontrivial
folds. Starting with a finite graph H we can obtain a stiff graph by a sequence of
folds; stiff graphs thus obtained are the same up to graph isomorphism [Brightwell
and Winkler 2000, Theorem 4.4]. A graph H is called dismantlable if there exists
a sequence of graphs H = H1,H2, . . . ,Hn such that Hi+1 is a fold of the graph
Hi for every i and Hn is a vertex with or without self-loop. If H is a connected
dismantlable graph which is not an isolated vertex then it follows that the stiff graph
obtained by successive folds of H is a vertex with a self-loop. A graph H is called
bipartite-dismantlable if there exists a sequence of graphs H = H1,H2, . . . ,Hn

such that Hi+1 is a fold of the graph Hi for every i and Hn is either a single edge
or a single vertex with a self-loop. Graph folding was introduced in [Nowakowski
and Winkler 1983] to study cop-win graphs; later in [Brightwell and Winkler 2000]
it was observed that folding preserves a lot of properties of the graphs. Since a fold
of a graph H is bipartite if and only if H is bipartite it follows that if a graph H is
bipartite-dismantlable, then it is dismantlable if and only if H is not bipartite.

The following proposition essentially follows from arguments similar to those in
the proof of [Brightwell and Winkler 2000, Theorem 4.1] and we omit them here:

Proposition 5.2. Let H be a bipartite-dismantlable graph. Then Xd
H is phased SI.

If H is bipartite-dismantlable and Xd
H is SI then H is dismantlable.

We can now state the main result of this section.

Theorem 5.3. Let H be a four-cycle hom-free graph. The following are equivalent:

(a) Xd
H is phased SI.

(b) Xd
H is phased block-gluing.

(c) H is bipartite-dismantlable.

The four-cycle hom-free condition is necessary for these equivalences; we will
discuss this further after the proof of Theorem 5.3.

Since phased SI is stronger than phased block-gluing, clearly (a) implies (b) and
by Proposition 5.2, (c) implies (a). To complete the proof of the theorem we need
to prove (b) implies (c). For this we need to introduce the universal cover. For more
details, look at [Chandgotia 2017; Angluin 1980; Stallings 1983].

A graph homomorphism φ :H′→H is called a graph covering if it is surjective
and for all v ∈ H, the restricted map φ|NH′ (v) is bijective onto NH(φ(v)); the
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induced map from Xd
H′ to Xd

H is denoted by φ̃. There is some subtlety here.
Undirected graphs H can be viewed as 1-CW-complexes where the vertices form
0-cells and the edges form the 1-cells of the complex. If H has no self-loops, then
clearly the condition for a map φ : H′→ H to be a graph covering implies that
it is a topological covering as well. However a topological covering space of a
graph H viewed as a 1-CW-complex may be different from the covering graph of
H when H has a self-loop. For instance, let H be a graph with a single vertex and
a self-loop and H′ be a graph with exactly one edge connecting two vertices; H′ is
a covering graph of H however H is homeomorphic to S1 as a CW-complex and its
only covering spaces are itself and R; neither of these are homeomorphic to H′.

To avoid confusion, by a covering space of H we mean the usual topological
covering space of H and by a covering graph of H we mean it in the sense as
defined above; these two notions coincide if H has no self-loops.

A universal covering graph of H, denoted by Huni is a covering graph of H which
is a tree; this is unique up to graph isomorphism. Alternatively it can be defined
as the connected covering graph (Huni, φuni) satisfying the following (universal)
property: given a covering graph map φ : H′→ H there exists a covering graph
map φ′ : Huni → H′ such that φ ◦ φ′ = φuni. There is an explicit construction
of these graphs: A nonbacktracking walk in a graph H is a finite walk in which
subsequent steps do not use the same edge, that is, walks p1, p2, . . . , pn such
that (pi , pi+1) 6= (pi+2, pi+1). Fix a vertex v ∈ H. Huni is the graph where the
vertex set is the set of nonbacktracking walks in H starting at the vertex v and two
nonbacktracking walks p and q are adjacent in the graph if one extends the other
by a single step. Choosing a different starting vertex v gives us a graph isomorphic
to Huni. It is a tree and the covering graph map φuni :Huni→H is given by

φuni(p) := terminal vertex of p.

Let us look at a few examples. Nonbacktracking walks in a tree cannot visit
the same vertex twice and there is a unique nonbacktracking walk joining two
distinct vertices. Hence the universal cover of a tree H is isomorphic to H. The
nonbacktracking walks in the graph Cn starting at 0 are the finite prefixes of the
periodic walks

0, 1, 2, 3, . . . , n− 1, 0, 1, . . . , and 0, n− 1, n− 2, . . . , 1, 0, n− 1, . . . .

Thus the universal covering graph of Cn is Z and the covering graph map is
(mod n) : Z→ Cn .

Another important class of examples are the barbell graphs Barn for n > 2 with
vertices {1, 2, 3, . . . , n} and, as seen in (Figure 2), edges

{(1, 1), (1, 2), (2, 3), . . . , (n− 1, n), (n, n)}.
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1 2 3 4

Figure 2. Barbell graph for n = 4.

The nonbacktracking walks on Barn starting at 1 are the finite prefixes of the periodic
walks

(1, 1, 2, 3, . . . , n− 1, n, n, n− 1, n− 2, . . . , 2, 1, 1, . . .) and

(1, 2, 3, . . . , n− 1, n, n, n− 1, n− 2, . . . , 2, 1, 1, . . .),

proving that (Barn)uni = Z. Thus though the cycles Cn and the barbells Barn seem
unrelated a priori, their universal covers are the same. By Proposition 5.5 it will
follow that the corresponding hom-shifts are related to each other. The fact that
Barn does not satisfy the block-gluing property has been essentially observed in
[Briceño and Pavlov 2017].

Let H be the graph for the hard square shift (given by Figure 1). The nonback-
tracking walks starting at the vertex 1 are (1), (1, 0), (1, 0, 0) and (1, 0, 0, 1). Thus
Huni is isomorphic to the graph in Figure 3.

The universal covers of a graph are so-called normal covers [Hatcher 2002,
Chapter 1]:

Proposition 5.4. Let H be a finite undirected graph. For all v′, v′′ ∈Huni satisfying
φuni(v

′) = φuni(v
′′) there is an automorphism ψ of Huni such that φuni ◦ψ = φuni

and ψ(v′)= v′′.

A lift of a configuration x ∈ Xd
H is a configuration x ′∈ Xd

Huni
such that φ̃uni(x ′)= x .

Proposition 5.5. Let H be a four-cycle hom-free graph. For all homomorphisms
x ∈ Xd−1

H , there exists a unique lift x ′ ∈ Xd−1
Huni

up to a choice of x ′
E0
. Further the

induced map φ̃uni is a graph covering map from (Huni)
d
walk to Hd

walk.

The proof of the first part of the proposition can be found in [Chandgotia 2017,
Proposition 6.2]; the proof there is for four-cycle free graphs but it carries over for
four-cycle hom-free graphs. For the second part, the same approach works with the
added observation that x ∼Hd

walk
y if and only if the configuration z :Zd−1�[0, 1]→

H given by

zEi,t :=
{

xEi if t = 0,
yEi if t = 1

is a graph homomorphism.
The proposition has immediate consequences for the phased block-gluing prop-

erty:

Corollary 5.6. Let H be a four-cycle hom-free graph. Then diam(Hd
walk) <∞ if

and only if Huni is finite.
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0 0′

1 1′

Figure 3. Graph for the lift of the hard square shift.

The proof shows diam(Hd
walk)<∞ for some d≥2 if and only if diam(Hd

walk)<∞

for all d ≥ 2; look also at Section 6D.

Proof. Suppose Huni is a finite graph (and hence a finite tree). By Proposition 5.2
and Proposition 4.1(2) we get that diam((Huni)

d
walk) <∞. Let x, y ∈ Xd−1

H and
x ′, y′ be lifts of x, y in Huni. There is a finite walk from x ′ to y′ in (Huni)

d
walk. By

applying the induced map φ̃uni to each step of the walk we get a walk of the same
length from x to y in Hd

walk. Thus diam(Hd
walk)≤ diam((Huni)

d
walk) <∞.

Now suppose that Huni is an infinite graph (and hence an infinite tree). By
Proposition 4.4 it is sufficient to prove that diam(H2

walk)=∞. Consider x ′ ∈ X1
Huni

such that x ′|N does not visit the same vertex twice; since Huni is a bounded degree
infinite graph such an x ′ exists. Let x := φ̃uni(x ′) and consider y := (v,w)∞,1 for
some edge v ∼H w. Suppose that there is a walk from x to (v,w)∞,1 in H2

walk. By
Proposition 5.5 it lifts to a unique walk from x ′ to y′ = (v′, w′)∞,1 in (Huni)

2
walk

for some v′, w′ ∈Huni.
Let i0 ∈N be such that dHuni(x

′

i0
, v′) :=mini∈N dHuni(x

′

i , v
′)=: t . Since Huni is a

tree it follows that dHuni(x
′

i0
, x ′i )= i − i0 for all i ≥ i0 and in fact

dHuni(x
′

i , v
′)= i − i0+ t

for all for all i ≥ i0. Therefore,

dwHuni
(x ′, (v′, w′)∞,1)=∞

which leads to a contradiction and completes the proof. �

Proof of Theorem 5.3. Let H be a four-cycle hom-free graph.We are left to prove
that (b) implies (c). By Corollary 5.6 it is sufficient to prove that if Huni is finite
then H is bipartite-dismantlable.

Now suppose that Huni is a finite tree and hence is bipartite-dismantlable. We
want to prove that H is bipartite-dismantlable. Suppose v′ folds into w′ in Huni, that
is, NHuni(v

′)⊂ NHuni(w
′). Let v := φuni(v

′) and w := φuni(w
′). By Proposition 5.4

it follows that for all v′′ ∈Huni satisfying φuni(v
′′)= v there is an automorphism ψ

of Huni for which φuni ◦ψ = φuni and ψ(v′)= v′′. Thus for w′′ := ψ(w′) we have
that φuni(w

′′)= w and v′′ folds into w′′. Since v′ and w′ have common neighbours
and φuni is a covering map it follows that v 6= w; in fact that v folds into w. By
folding all v′′ which satisfy φuni(v

′′) = v we get (H \ {v})uni. The proof can be
completed by induction on |H|. �
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5A. Why is the four-cycle hom-free condition necessary? Some of the implica-
tions of Theorem 5.3 fail without the four-cycle hom-free assumption. We know
that (a) implies (b) for all shift spaces and by Proposition 5.2, (c) implies (a). Let
us see why the other implications do not hold:

(1) Neither (a) nor (b) implies (c): Here we see why the phased SI property in
hom-shifts does not imply that the corresponding graph is bipartite-dismantlable.
Let Kn denote the complete graph with n vertices, 1, 2, . . . , n. It is mentioned
in [Briceño 2014] that Xd

Kn
is SI for n ≥ 2d + 1; note that there is no folding

possible in Kn and hence it is not bipartite-dismantlable (except for n = 2). Yet
Xd

Kn
is block-gluing for n ≥ 4 and d ∈ N; this is proved in Proposition 5.7. The

argument given here is by Ronnie Pavlov; similar arguments appear in [Schmidt
1995, Section 4.4].

A vertex in Zd−1 is called even if it is in the same partite class as E0 and odd
otherwise.

Proposition 5.7. For n ≥ 4, diam((Kn)
d
walk)≤ 4.

By Proposition 4.1 this implies that Xd
Kn

is block-gluing for n ≥ 4.

Proof. Let x ∈ Xd−1
Kn

. Let y ∈ Xd−1
Kn

be a homomorphism given by

yEi =


1 if Ei is even and xEi 6= 1,
2 if Ei is even and xEi = 1,
3 if Ei is odd and xEi 6= 3,
4 if Ei is odd and xEi = 3.

Clearly x ∼Hd
walk

y and y ∼Hd
walk
(3, 1)∞,d−1 (which is the checkerboard pattern of

3s and 1s which has value 3 at entry E0). Therefore dwKn
(x, (3, 1)∞,d−1)≤ 2. Hence

diam((Kn)
d
walk)≤ 4. �

(2) (b) does not imply (a): Here we show the existence of a hom-shift which is
phased block-gluing but not phased SI. It was mentioned to the authors by Raimundo
Briceño (2014) that X3

K4
is not phased SI (while by Proposition 5.7 it is phased

block-gluing). Here we shall give another example; this will be an instance of a
large class of hom-shifts with the phased block-gluing property (Section 6B). Let
H be the graph given by Figure 4. We will prove that Xd

H is phased block-gluing
for all d ≥ 2 but not phased SI even for d = 2. Let us first observe why is X2

H not
phased SI. Fix n ∈ N and let L be the shape given by

L := {(i, 0), (n, i) : 0≤ i ≤ n}.

Let x ∈ X2
H be given by

x( j,k) := j + k(mod 6).

Observe that for all i ∈ Z, i + 1(mod 6) is the unique vertex in H adjacent to
both i (mod 6) and i + 2(mod 6). It follows that x( j+1,k) is the unique vertex
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Figure 4. On the left: Graph H for a hom-shift which is phased
block-gluing but not phased SI. On the right: A graph homomor-
phism f :H→H such that f (v)∼H v and f 3(H) is a single edge.

adjacent to x( j,k) and x( j+1,k+1) for all ( j, k) ∈ Z2 which implies that if y ∈ X2
H is

a configuration such that x |L = y|L then x |[0,n]�[0,n] = y|[0,n]�[0,n]. Thus X2
H is not

phased SI.
Now we will prove that Xd

H is phased block-gluing for all d ≥ 2. Consider the
map f :H→H given by Figure 4 and d ≥ 2: For all v ∈H, f (v) is defined to be
the head of the arrow starting at v. Observe that f is a graph homomorphism such
that f (v)∼H v for all v ∈H and f 3(H) is the edge joining vertices 4′ and 6. Thus
for all x ∈ Xd−1

H , f ◦ x ∼Hd
walk

x and f 3
◦ x is either (4′, 6)∞,d−1 or (6, 4′)∞,d−1

proving
dwH(x, (4

′, 6)∞,d−1)≤ 4

and hence diam(Hd
walk)≤ 8.

6. Further directions

6A. Decidability of the fixed block-gluing distance.

Question. Fix n ∈ N and d ≥ 2. Is there an algorithm to decide, for undirected
graphs H, whether diam(Hd

walk)= n?

Let us see how such an algorithm may be constructed for certain dimensions.
Fix n ∈ N and a graph H. Recall, as in Section 3 the graph H2

n,walk for which
the vertices are homomorphisms from [−n, n] to H; two such homomorphisms
x, y are adjacent if xi ∼H yi for all i . Consider the (d−1)-dimensional hom-shift
constructed using this graph: Xd−1

H2
n,walk

. This makes notation onerous so we denote
these shift spaces by Xd−1

H,n . Let

Xd−1
H,TB :=

{
(x, y) ∈ Xd−1

H × Xd−1
H : there is a walk of even length from xE0 to yE0

}
.

Observe that if H is not bipartite then Xd−1
H,TB = Xd−1

H × Xd−1
H ; if it is bipartite then

we further require that x E0 and y E0 are in the same partite class. There is a natural
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map πd−1
H,n : X

d−1
H,n → Xd−1

H,TB given by πd−1
H,n (z) := (x, y) where

xEi := zEi (n), yEi := zEi (−n).

This construction is related with the phased block-gluing property via the following
proposition:

Proposition 6.1. Let H be an undirected graph. Then Xd
H is phased block-gluing

for some block-gluing distance 2n if and only if the map πd−1
H,n is surjective.

Proof. By the proof of Proposition 4.1, Xd
H is phased block-gluing for distance 2n

if and only if for all x, y ∈ Xd−1
H there exists a walk either from x to y or from x to

σ Ee1(y) of length 2n; equivalently, for all x, y ∈ Xd−1
H there exists z ∈ Xd−1

H,n such
that either πd−1

H,n (z)= (x, y) or πd−1
H,n (z)= (x, σ

Ee1(y)). Consider a pair

(x ′, y′) ∈ Xd−1
H,TB.

The distance between x ′ and y′ is even. Thus,

πd−1
H,n (z

′) 6= (x, σ Ee1(y))

for z′ ∈ Xd−1
H,n , and there exists z′′ ∈ Xd−1

H,n such that πd−1
H,n (z

′′)= (x, y), completing
the proof. �

Theorem 6.2. It is decidable whether a hom-shift in two dimensions is block-gluing
for distance n.

Recall, a shift space is called a sofic shift if it is the image of an SFT under a
sliding block-code.

Proof. We will verify this only in the case when n is even; for odd n, the proof is
similar. By Proposition 6.1 it is equivalent to verify that

Image(π1
H,n/2)= X1

H,TB.

Now X1
H,TB is an SFT (and hence sofic) and Image(π1

H,n/2) is sofic; there are
well-known algorithms to decide whether two sofic shifts are the same; [Lind and
Marcus 1995, Theorem 3.4.13]. This proves that it is decidable whether a hom-shift
in two dimensions is block-gluing for block-gluing distance n. �

Since it is undecidable whether a higher dimensional SFT is nonempty it au-
tomatically follows that it is undecidable whether two (d − 1)-dimensional sofic
shifts are equal for d ≥ 3. However even for d = 2 we do not know the answer to
the following questions:

Question. Fix n ∈N. Is it decidable whether the SI gluing distance for a hom-shift
is less than or equal to n?

Question. Is the phased block-gluing/phased SI property decidable for hom-shifts?
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Figure 5. A cover of K4 on the left and its collapsing map on
the right.

6B. The gluing property for general boards G. Our construction of the graph
Hd

walk was motivated by the study of the block-gluing property. The question of
whether diam(Hd

walk) <∞ can be viewed as a certain “reconfiguration” problem. A
natural extension of the question is the following: Let G be a connected undirected
graph without self-loops. Consider the graph

HG
walk := (Hom(G,H), EG

walk) where EG
walk := {(x, y) : xi ∼H yi for all i ∈ G}.

Question. For which graphs H is diam(HG
walk) <∞ for all undirected graphs G?

For a reconfiguration problem of a similar nature, a characterisation was given in
[Brightwell and Winkler 2000]: We say that Hom(G,H) satisfies the pivot property
if for all x, y ∈ Hom(G,H) which differ only at finitely many sites there exists a
sequence x = x1, x2, . . . , xn

= y ∈ Hom(G,H) such that x i , x i+1 differ at most
at one site. Brightwell and Winkler proved that the pivot property is satisfied by
Hom(G,H) for all graphs G if and only if H is dismantlable. We wonder if a
characterisation of similar nature exists in our case as well. In the following we
provide a large class of graphs H for which diam(HG

walk) <∞ for all connected
undirected graphs G.

We say that H is collapsible if there exists a graph homomorphism f :H→H
such that f (v)∼H v for all v ∈H and there exists n ∈N such that f n(H) is either an
edge or a vertex with a self-loop; f is called a collapsing map. If H is a collapsible
graph, diam(HG

walk) <∞ for all graphs G (see Section 5A(2)).
While one may feel that the proof that diam((Kn)

d
walk) <∞ for all n ≥ 4 in

Proposition 5.7 is of a very different nature from that for the collapsible graphs, it
can be shown that they are intimately related. Consider the covering graph map
φ : H→ K4 given by φ(v′) = φ(v′′) = v for all v ∈ [1, 4] where H is as shown
in Figure 5. As in Proposition 5.5, it is easy to see that for all homomorphisms
x ∈ Xd−1

K4
, there exists a unique lift x ′ ∈ Xd−1

H up to a choice of x ′
E0
. Further the

induced map φ̃ is a graph covering map from (H)dwalk to (K4)
d
walk. One can thereby

conclude diam(Hd
walk) < ∞ if and only if diam((K4)

d
walk) < ∞. But the map

f :H→H given by Figure 5 is a collapsing map proving diam((K4)
d
walk) <∞.
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6C. The growth rate of the diameter of Hd
n,walk . We write that a sequence an is

equal to 2(n) if there exists c,C > 0 such that cn ≤ an ≤ Cn.

Conjecture. If H is a finite undirected graph, diam(Hd
walk) = ∞ if and only if

diam(Hd
n,walk)=2(n).

This was also conjectured by Ronnie Pavlov and Michael Schraudner, who
showed that this is true in several examples (personal communication from Raimundo
Briceño, 2015). From (3-1) we get a natural upper bound on the diameter:

diam(Hd
n,walk)≤ diam(H)+ 2n(d − 1).

If H is a four-cycle hom-free graph and d≥2 then it can be proved diam(Hd
walk)=∞

if and only if diam(Hd
n,walk)=2(n). We will prove the conjecture in the case when

H is a four-cycle hom-free graph.
Suppose that diam(Hd

n,walk)=2(n). Since diam(Hd
n,walk) is increasing in n and

converges to diam(Hd
walk), it follows that diam(Hd

walk)=∞.
For the other direction assume that diam(Hd

walk)=∞. Since diam(Hd
n,walk) is

increasing in d, it is sufficient to prove that diam(Hd
n,walk)=2(n) for d = 2. By

Corollary 5.6, Huni is infinite. As in the proof of the corollary, let x ′ ∈ X1
Huni

be
such that x ′|N does not visit the same vertex twice and let x := φ̃uni(x ′). Then
dHuni(x

′

i , x ′j )= |i − j | for all i, j ∈ N implying that for all vertices v′ ∈Huni, there
exists i ∈ [0, 2n] such that dHuni(xi , v

′)≥ n. This implies that the shortest walk in
Hd

n,walk from x |[0,2n] to (v,w)∞,1|[0,2n] for all edges v ∼H w is of length at least n.
This proves that diam(H2

n,walk)=2(n).

6D. Dependence on dimension.

Problem. Construct a graph H for which diam(H2
walk) <∞ but diam(H3

walk)=∞.

In this paper we mention two large collections of graphs where diam(Hd
walk)<∞

for all d: bipartite-dismantlable graphs (as in Section 5) and collapsible graphs (as
in Section 6B). However in all such examples, we find that diam(Hd

walk) <∞ for
all d. To find examples for the problem above, we would have to find a way to
prove that diam(H2

walk) <∞ in a fundamentally different way.
By Proposition 4.1, the problem stated above is equivalent to the problem of

finding a graph H for which X2
H is block-gluing but X3

H is not block-gluing. We
note that the answer to the analogue of this problem for SI is known: X2

K4
is SI

[Briceño 2014] but X3
K4

is not SI (personal communication, 2014).

6E. Block-gluing for periodic points.

Problem. Construct a graph H such that dwH(x, y) < ∞ for all periodic points
x, y ∈ Xd−1

H but diam(Hd
walk)=∞.
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If diam(Hd
walk)=∞, by Proposition 4.6 there exists some x, y ∈ Xd−1

H such that
dwH(x, y)=∞, however it is not clear if x, y can be chosen periodic. Such periodic
points can be chosen if H is four-cycle free: By Corollary 5.6, Huni is infinite and
H is not a tree. Let

u0, u1, . . . , uk−1, uk = u0

be a simple cycle in H for some k > 2. Consider x ∈ X2
H given by xi := ui (mod k)

for all i ∈ Z; x is periodic. Let x ′ ∈ X1
Huni

be any lift of x . Since xi 6= xi+2 for all
i ∈ Z it follows that x ′i 6= x ′i+2 for all i ∈ Z; because Huni is a tree, this implies that
x ′ does not visit the same vertex twice. As in the proof of Corollary 5.6 it follows
that dwH(x, (v,w)

∞,1)=∞ for all v ∼H w.

6F. Measures of maximal entropy and Markov chains on H2
walk . Given a shift

space X and b ∈ LB(X) for some B ⊂ Z2, denote by

[b]B := {x ∈ X : x |B = b}

the corresponding cylinder set. One of the motivations for studying the graph Hd
walk

is also to understand the measures of maximal entropy on the space Xd
H. Let us

talk about the case d = 2. There is a natural correspondence between stochastic
processes ν on H2

walk and probability measures µ on X2
H given by

ν
(
X i

j = ai, j for (i, j) ∈ B
)
:= µ([a]B) for B ⊂ Z2 finite and a ∈ LB(X2

H).

For this subsection the necessary background for measures of maximal entropy
can be gathered from [Ruelle 2004; Burton and Steif 1994] and for Markov chains
from [Durrett 2010, Chapter 6]. Let H be a finite undirected graph and µ be an
ergodic measure of maximal entropy for X2

H. Consider the Markov chain ν on
H2

walk obtained by the “Markovisation” of µ (look also at [Bowen 2008, Chapter 1]):
Let π be the probability measure on X1

H given by marginalising µ to the vertical
line {0}�Z. Consider the probability (also called Markov) kernel on (H2

walk,B),
κ : X1

walk×B→ [0, 1] given by

κ(x, [y]−n,n) := µ
(
X(1,i) = yi for i ∈ [−n, n]|X(0,i) = xi for i ∈ Z

)
;

it is well defined for π -almost every x .
Since µ is a shift-invariant probability measure it follows that π is a stationary

measure for the kernel κ . It can be proved that the measure µ̃ on X2
H corresponding

to the Markov chain ν is also a measure of maximal entropy.

Conjecture. Let H be a finite undirected graph and µ be an ergodic measure of
maximal entropy on X2

H. Then the stochastic process on H2
walk corresponding to µ

is a Markov chain.

A study of random walks on the graph (C3)
2
n,walk can be found in [Boissard et al.

2015].
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6G. When is an SFT conjugate to a hom-shift?

Question. Let d = 1. Is it decidable whether an SFT is conjugate to a hom-shift?

For d ≥ 2 we have already observed in Corollary 2.3 that it is undecidable
whether an SFT is conjugate to a hom-shift.
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