Instructions

- (i) Solutions should be well-crafted, legible and written in complete English sentences. You will be graded both on accuracy as well as the quality of exposition.
- (ii) Theorems stated in the text and proved in class do not need to be reproved. Any other statement should be justified rigorously.
- (iii) If your assignment has more than one page, staple them together.
- (iv) Do not forget to include your name and SID.
- 1. Let $p \ge 0$. Determine whether $\sum_n a_n$ converges or diverges for each of the following choices of a_n (the answer can depend on the value of p):

(a)
$$a_n = \frac{\sqrt{n+1} - \sqrt{n}}{n^p}$$
, (b) $a_n = \frac{1}{(\log n)^{n^p}}$, (c) $a_n = \left(\frac{n}{n+1}\right)^{n^2}$.

- 2. Follow the steps outlined below to give a proof of the alternating series test. Suppose that $a_1 \ge a_2 \ge a_3 \ge \cdots \ge 0$ and that $\lim_{n\to\infty} a_n = 0$. Let $s_n = \sum_{k=1}^n (-1)^k a_k$.
 - (a) Prove that if $n > m \ge 0$ then $|s_n s_m| \le a_{m+1}$.
 - (b) Prove that $\sum_{k=1}^{\infty} (-1)^k a_k$ converges and that, for all $n \ge 0$,

$$|\sum_{k=1}^{\infty} (-1)^k a_k - s_n| \le a_{n+1}$$

This shows that for this special sort of alternating series, the error in approximating the infinite sum by a partial sum is at most the first omitted term.

- 3. (a) Determine all complex values of z for which $\sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)^2} z^n$ converges.
 - (b) Find a power series $\sum_{n=0}^{\infty} a_n z^n$ that converges for all complex z with |z| < 1 and diverges for all $|z| \ge 1$.
 - (c) Find a power series $\sum_{n=0}^{\infty} b_n z^n$ that converges for at least one complex number z with |z| = 1 and diverges for at least one z with |z| = 1.
- 4. Determine the radius of convergence of the power series $\sum_{n=1}^{\infty} a_n z^n$ for each of the following.
 - (a) $a_n = (1 + 1/n)^{-n^2}$,
 - (b) $a_{2m} = m^2, a_{2m+1} = 4^{-m},$
 - (c) $a_{2m} = (\log m)^m, a_{2m+1}$ arbitrary.
- 5. Suppose that $\sum_{n} a_n z^n$ and $\sum_{n} b_n z^n$ have radii of convergence R_1 and R_2 , respectively. Prove that the radius of convergence of $\sum_{n} a_n b_n z^n$ is at least $R_1 R_2$.
- 6. If $\sum_{n} a_n z^n$ has radius of convergence R, what are the radii of convergence of $\sum_{n} a_n z^{2n}$ and $\sum_{n} a_n^2 z^n$?
- 7. For each of the following series, determine which values of z give convergence and which give divergence.

(a)
$$\sum_{n=0}^{\infty} \left(\frac{z}{1+z}\right)^n$$
, (b) $\sum_{n=0}^{\infty} \frac{z^n}{1+z^{2n}}$.