Instructions

- (i) Solutions should be well-crafted, legible and written in complete English sentences. You will be graded both on accuracy as well as the quality of exposition.
- (ii) Theorems stated in the text and proved in class do not need to be reproved. Any other statement should be justified rigorously.
- (iii) If your assignment has more than one page, staple them together.
- (iv) Do not forget to include your name and SID.
 - 1. Let (X, d) be a metric space. Suppose that every subset of X is compact. Prove that X must be finite.
 - 2. Let $\mathbb{S}^2 = \{\xi_1, \xi_2, \xi_3\} \in \mathbb{R}^3 : \xi_1^2 + \xi_2^2 + \xi_3^2 = 1\}$ be the unit sphere in \mathbb{R}^3 ; we will think of this set as a subset of \mathbb{R}^3 , where \mathbb{R}^3 has the usual Euclidean metric.

Let (\mathbb{C}_{∞}, d) be the extended complex plane from Homework 5, problem 1, with the metric defined in that problem.

Let $\pi: \mathbb{S}^2 \to \mathbb{C}_{\infty}$ be the stereographic projection, and let π^{-1} be its inverse (you proved in HW 5 that π is a bijection, so in particular π^{-1} exists).

- (a) Prove that a set $G \subset \mathbb{S}^2$ is relatively open in \mathbb{S}^2 if and only if $\pi(G)$ is open in \mathbb{C}_{∞} .
- (b) Prove that (\mathbb{C}_{∞}, d) is compact.
- 3. Consider the metric space (C[a, b], d) from Homework 5 problem 3. Is this metric space compact? Prove that your answer is correct.
- 4. Let (X, d) be a metric space and let $a \in X$, $B \subset X$. Define $d(a, B) = \inf\{d(a, b) : b \in B\}$.
 - (a) Consider \mathbb{R}^k with the Euclidean metric. Let $B \subset \mathbb{R}^k$ be nonempty and compact, and let $a \in B^c$. Prove that there exists $b \in B$ such that d(a, b) = d(a, B).
 - (b) Consider \mathbb{R}^k with the Euclidean metric. Let $B \subset \mathbb{R}^k$ be nonempty and closed, and let $a \in B^c$. Prove that there exists $b \in B$ such that d(a, b) = d(a, B).
 - (c) Consider \mathbb{Q} with the usual Euclidean metric d(p,q) = |p-q|. Give an example of a nonempty closed subset $B \subset \mathbb{Q}$ and a rational number $a \in B^c$ such that there is no $b \in B$ for which d(a, b) = d(a, B).