Instructions

- (i) Solutions should be well-crafted, legible and written in complete English sentences. You will be graded both on accuracy as well as the quality of exposition.
- (ii) Theorems stated in the text and proved in class do not need to be reproved. Any other statement should be justified rigorously.
- (iii) If your assignment has more than one page, staple them together.
- (iv) Do not forget to include your name and SID.
 - 1. The extended complex plane \mathbb{C}_{∞} consists of the complex plane \mathbb{C} together with an additional point ∞ . A representation of the extended complex plane as a metric space can be obtained via the *stereographic projection* π , as follows. Consider the unit sphere

$$\mathbb{S}^2 = \{\xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3 : \xi_1^2 + \xi_2^2 + \xi_3^2 = 1\}.$$

Denote by \mathbb{E} the infinite equatorial plane in \mathbb{R}^3 given by $\xi_3 = 0$, so that \mathbb{E} can be identified with \mathbb{C} via the correspondence: $(\xi_1, \xi_2, 0) \in \mathbb{E} \longleftrightarrow \xi_1 + i\xi_2 \in \mathbb{C}$. Write $p \in \mathbb{E}$ as $p = \pi(\xi)$, where ξ is the intersection of \mathbb{S}^2 with the line passing through p and the north pole N = (0, 0, 1). We define ∞ in \mathbb{C}_∞ by setting $\infty = \pi(N)$. Draw the picture.

- (a) Show that the point $(\xi_1, \xi_2, \xi_3) \in \mathbb{S}^2$ on the sphere corresponds to the point $z = (\xi_1 + i\xi_2)/(1-\xi_3) \in \mathbb{C}$.
- (b) Conversely, given $z \in \mathbb{C}$, show that the corresponding point on \mathbb{S}^2 is (ξ_1, ξ_2, ξ_3) with

$$\xi_1 + i\xi_2 = \frac{2z}{1+|z|^2}, \qquad \xi_3 = \frac{|z|^2 - 1}{|z|^2 + 1}.$$

(c) We define a metric on \mathbb{C}_{∞} by setting the distance between two complex numbers equal to the chordal distance between their representatives on \mathbb{S}^2 . Show that this gives:

$$d(z,w) = \frac{2|z-w|}{\sqrt{1+|z|^2}\sqrt{1+|w|^2}}, \qquad d(z,\infty) = \frac{2}{\sqrt{1+|z|^2}}.$$

(This does define a metric, but you need not verify this.)

- 2. Let E be a subset of a metric space X. Prove that the following statements are equivalent:
 - (a) E is dense in X. (See Definition 2.18(j).)
 - (b) The only closed set which contains E is X.
 - (c) The only open set disjoint from E is the empty set.
 - (d) E intersects every non-empty open set.
 - (e) E intersects every neighbourhood in X.

- 3. Let $a, b \in \mathbb{R}$, a < b. Let C[a, b] denote the collection of all continuous, real-valued functions defined on the closed interval [a, b].
 - (a) Check that

$$d(f,g) = \max_{a \leq t \leq b} \left|f(t) - g(t)\right|$$

defines a metric on C[a, b].

- (b) Is the set \mathcal{P} of all polynomials in the metric space (C[a, b], d) an open set in C[a, b]?
- (c) Is \mathcal{P} a closed subset of the metric space C[a, b]?