Instructions

- (i) Solutions should be well-crafted, legible and written in complete English sentences. You will be graded both on accuracy as well as the quality of exposition.
- (ii) Theorems stated in the text and proved in class do not need to be reproved. Any other statement should be justified rigorously.
- (iii) If your assignment has more than one page, staple them together.
- (iv) Do not forget to include your name and SID.
 - 1. Let A and B be sets. We say that the cardinality of A is at most the cardinality of B (denoted $|A| \leq |B|$) if there exists an injection $f: A \to B$.
 - (a) Prove that if A is infinite and $|A| \leq |B|$, then B is infinite.
 - (b) Prove that if A is uncountable and $|A| \leq |B|$, then B is uncountable.
 - 2. Let A and B be sets, with A non-empty.
 - (a) Prove that if $|A| \leq |B|$, then there exists a surjection $g: B \to A$.
 - (b) (Extra credit, worth 10%) Prove that if A and B are sets with |A| ≤ |B| and |B| ≤ |A|, then A and B have the same cardinality, i.e., there exists a bijection between A and B. Hint. This problem is really hard. Try to create a bijection out of the two injections, by looking at "forward and backward chains" of images.
 - 3. Define $C_0 = [0, 1]$; this is a union of $2^0 = 1$ closed intervals, each of length $3^0 = 1$. Define $C_1 = [0, 1/3] \cup [2/3, 1]$; this set contains $2^1 = 2$ intervals, each of length $3^{-1} = 1/3$; it is obtained by removing the middle third of each interval from C_0 . Define $C_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1]$; this set contains $2^2 = 4$ intervals, each of length $3^{-2} = 1/9$; it is obtained by removing the middle third of each interval from C_1 . For each $i = 3, 4, \ldots$, define C_i to be the union of 2^i closed intervals, each of length 3^{-i} , obtained by removing the middle third of each of length 3^{-i} . Prove that C is uncountable.
 - 4. Let p be a prime number. Define the function $v_p: \mathbb{Q} \to \mathbb{R}$ as follows. For each nonzero rational number $a/b \in \mathbb{Q}$ (here $a \in \mathbb{Z}$ and $b \in \mathbb{N}$), there is a unique number $k \in \mathbb{Z}$ so that $a/b = p^k(c/d)$, where neither c nor d are divisible by p. Define $v_p(a/b) = p^{-k}$ for $a \neq 0$, with the convention that $v_p(0) = 0$. Define the function $d: \mathbb{Q} \times \mathbb{Q} \to \mathbb{R}$ by $d(x, y) = v_p(x y)$.
 - (a) Prove that d is a metric.
 - (b) Let r > 0, let $x \in \mathbb{Q}$ and let $y \in N_r(x) = \{z \in \mathbb{Q} : d(x,z) < r\}$. Prove that $N_r(x) = N_r(y)$. Remark. this is rather strange—every point in the ball $N_r(x)$ is also the "center" of the ball!