Math 263 Assignment 6 Solutions

Problem 1. Find the volume of the solid bounded by the surfaces \(z = 3x^2 + 3y^2 \) and \(z = 4 - x^2 - y^2 \).

Solution. The two paraboloids intersect when \(3x^2 + 3y^2 = 4 - x^2 - y^2 \) or \(x^2 + y^2 = 1 \). Writing down the given volume first in Cartesian coordinates and then converting into polar form we find that

\[
V = \int \int_{x^2+y^2 \leq 1} [(4 - x^2 - y^2) - (3x^2 + 3y^2)] \, dA
\]

\[
= \int_0^{2\pi} \int_0^1 (4 - r^2) r \, dr \, d\theta
\]

\[
= \int_0^{2\pi} (4r - 4r^3) \, dr = 2\pi.
\]

Problem 2. Sketch the region enclosed by the curve \(r = b + a \cos \theta \) and compute its area. Here \(a \) and \(b \) are positive constants, \(b > a \).

Solution. The curve is a cardioid symmetric about the \(x \)-axis. The area enclosed by it is

\[
A = 2 \int_0^{\pi} \int_0^{b + a \cos \theta} r \, dr \, d\theta
\]

\[
= \int_0^{\pi} \left(b + a \cos \theta \right)^2 \, d\theta
\]

\[
= \int_0^{\pi} \left[b^2 + a^2 \frac{1}{2} \left(1 + \cos(2\theta) \right) + 2ab \cos \theta \right] \, d\theta
\]

\[
= \left(b^2 + \frac{a^2}{2} \right) \pi.
\]

Problem 3. A lamina occupies the region inside the circle \(x^2 + y^2 = 2y \) but outside the circle \(x^2 + y^2 = 1 \). Find the center of mass if the density at any point is inversely proportional to its distance from the origin.

Solution. The circles \(x^2 + y^2 = 2y \) and \(x^2 + y^2 = 1 \) may be written in polar coordinates as \(r = 2 \sin \theta \) and \(r = 1 \) respectively. They intersect at two points, where \(\sin \theta = \frac{1}{2} \), so that \(\theta = \frac{\pi}{6} \) and \(\theta = \frac{5\pi}{6} \). Further the density function is \(\rho(x, y) = k/\sqrt{x^2 + y^2} = k/r \),
where \(k \) is the constant of proportionality. Therefore

\[
\text{mass } m = \int \frac{5 \pi}{6} \int_1^{2 \sin \theta} \frac{k}{r} r dr \ d\theta \\
= k \int \frac{5 \pi}{6} (2 \sin \theta - 1) d\theta \\
= 2k(\sqrt{3} - \frac{\pi}{3})
\]

By symmetry of the domains and the function \(f(x) = x \), we know that \(M_y = 0 \), and

\[
M_x = \int \frac{5 \pi}{6} \int_1^{2 \sin \theta} kr \sin \theta dr \ d\theta \\
= \frac{k}{2} \int \frac{5 \pi}{6} (4 \sin^3 \theta - \sin \theta) d\theta \\
= \sqrt{3}k.
\]

Hence \((\bar{x}, \bar{y}) = (0, \frac{3\sqrt{3}}{2(3\sqrt{3} - \pi)})\). \(\square \)

Problem 4. Evaluate the triple integral

\[
\iiint_E z dV,
\]

where \(E \) is bounded by the cylinder \(y^2 + z^2 = 9 \) and the planes \(x = 0, y = 3x \) and \(z = 0 \) in the first octant.

Solution.

\[
\iiint_E z dV = \int_0^1 \int_{3x}^3 \int_0^{\sqrt{9-y^2}} z \ dz \ dy \ dx \\
= \int_0^1 \int_{3x}^3 \frac{1}{2} (9 - y^2) \ dy \ dx \\
= \int_0^1 \left[\frac{9y}{2} - \frac{y^3}{6} \right]_{y=3x}^{y=3} \ dx \\
= \int_0^1 \left[9 - \frac{27}{2} x + \frac{9}{2} x^3 \right] dx = \frac{27}{8}.
\]

Problem 5. Find the volume of the solid bounded by the cylinder \(y = x^2 \) and the planes \(z = 0, z = 4 \) and \(y = 9 \).
Solution.

\[V = \iiint_E dV = \int_{-3}^{3} \int_{x^2}^{9} \int_0^4 dz \, dy \, dx \]
\[= 4 \int_{-3}^{3} \int_{x^2}^{9} dy \, dx \]
\[= 4 \int_{-3}^{3} (9 - x^2) \, dx \]
\[= 144. \]

\[\square \]

Problem 6. Sketch the solid whose volume is given by the iterated integral

\[\int_0^2 \int_0^{2-y} \int_0^{1-y^2} dx \, dz \, dy. \]

Solution. The triple integral is the volume of \(E = \{(x, y, z) : 0 \leq y \leq 2, 0 \leq z \leq 2 - y, 0 \leq x \leq 4 - y^2\} \), the solid bounded by the three coordinate planes, the plane \(z = 2 - y \), and the cylindrical surface \(x = 4 - y^2 \).

\[\square \]

Problem 7. Rewrite the integral

\[\int_0^1 \int_0^{1-x^2} \int_0^{1-x} f(x, y, z) \, dy \, dz \, dx \]

as an equivalent iterated integral in five other orders.

Solution. The projection of \(E \) onto the \(xy \) plane is the right triangle bounded by the coordinate axes and the straight line \(x + y = 1 \). On the other hand, the projection onto the \(xz \) plane is the region bounded by the coordinate axes and the parabola \(z = 1 - x^2 \). Therefore the given iterated integral may also be written as

\[\int_0^1 \int_0^{1-x^2} \int_0^{1-x} f(x, y, z) \, dy \, dz \, dx \]
\[= \int_0^1 \int_0^{\sqrt{1-x}} \int_0^{1-x} f(x, y, z) \, dy \, dx \, dz \]
\[= \int_0^1 \int_0^{1-x} \int_0^{1-x^2} f(x, y, z) \, dz \, dx \, dy \]
\[= \int_0^1 \int_0^{1-x^2} \int_0^{1-x} f(x, y, z) \, dz \, dy \, dx. \]

Now the surface \(z = 1 - x^2 \) intersects the plane \(y = 1 - x \) in a curve whose projection in the \(yz \)-plane is \(z = 1 - (1 - y)^2 \) or \(z = 2y - y^2 \). So we must split up the projection of \(E \) on
the yz plane (which is the unit square) into two regions, whose boundary is the curve above. The given integral is therefore also equal to

\[
\int_0^1 \int_0^{1-\sqrt{1-z}} \int_0^{\sqrt{1-z}} f(x, y, z) \, dx \, dy \, dz + \int_0^1 \int_{1-\sqrt{1-z}}^1 \int_0^{1-y} f(x, y, z) \, dx \, dy \, dz
\]

\[
= \int_0^1 \int_0^{2y-y^2} \int_0^{1-y} f(x, y, z) \, dx \, dy \, dz + \int_0^1 \int_0^{1-\sqrt{1-z}} \int_0^{\sqrt{1-z}} f(x, y, z) \, dx \, dy \, dz.
\]