1. \[\lim_{x \to 2} \frac{x^2 - 6x + 8}{x^2 - 4} \]

\[\frac{0}{0} \]?

Technique: Factor.

\[x^2 - 6x + 8 = (x - 2)(x - 4) \]
\[x^2 - 4 = (x + 2)(x - 2) \]

\[\lim_{x \to 2} \frac{(x - 2)(x - 4)}{(x + 2)(x - 2)} = \lim_{x \to 2} \frac{x - 4}{x + 2} = -\frac{1}{2} \]

2. \[\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9} \]

\[\frac{0}{0} \]?

Multiply with \(\sqrt{x} + 3 \) \(\text{algebraic conjugate of} \sqrt{x} - 3 \)

\[\frac{(\sqrt{x} - 3)(\sqrt{x} + 3)}{(x - 9)(\sqrt{x} + 3)} = \frac{(\sqrt{x})^2 - 3^2}{(x - 9)(\sqrt{x} + 3)} = \frac{x - 9}{x - 9} \cdot \frac{\sqrt{x} + 3}{\sqrt{x} + 3} = 1 \]

\[\lim_{x \to 9} \frac{1}{3 + 3} = \frac{1}{6} \]
\[
\lim_{x \to 9} \frac{\sqrt{x} - 3}{\sqrt{x} - 9} = \frac{3 - 9}{3 - 9} = -6
\]

\[
\lim_{x \to 9} \frac{\sqrt{x} - 9}{\sqrt{x} - 3} = \frac{6}{3} = 2
\]

\[
\lim_{x \to 9} \frac{\sqrt{x} - 9}{\sqrt{x} + 3} = \text{does not exist.}
\]

\[
\text{Ex. } f(x) = \begin{cases} x^2 + 1 & \text{if } x > -1 \\ \frac{1}{x+1} & \text{if } x = -1 \end{cases}
\]

\[
\lim_{x \to -1^-} f(x)? \quad \lim_{x \to -1^+} f(x)? \quad \lim_{x \to -1} f(x)? \quad \lim_{x \to 1^-} f(x)? \quad \lim_{x \to 1^+} f(x)? \quad \lim_{x \to 1} f(x)?
\]

\[
f(-1) = \sqrt{-1+1} = 0
\]

\[
\lim_{x \to -1^-} f(x) = (-1)^2 + 1 = 2
\]

\[
\lim_{x \to -1^+} f(x) = \sqrt{-1+1} = 0
\]

\[
\lim_{x \to 1^-} f(x) \text{ does not exist because } \lim_{x \to 1^-} f(x) \neq \lim_{x \to 1^+} f(x).
\]
Continuity at Point

\[f(x) \]

\[a \quad \rightarrow \quad x \]

\(f(x) \) is continuous at \(x = a \) if we can draw \(f(x) \) without lifting the pen.

Definition.
A function \(f \) is continuous at \(x = a \) if \(\lim_{{x \to a}} f(x) = f(a) \).

If \(f \) is not continuous at \(a \), then \(a \) is a point of discontinuity.

\[\lim_{{x \to a}} f(x) \]

DNE

\(f(x) \) is not continuous at \(x = a \)
check list

1. \(f(a) \) is defined. \(f(a) \rightarrow v \)

2. \(\lim_{x \to a} f(x) \) exist

3. \(\lim_{x \to a} f(x) = f(a) \)

points of discontinuity?

\(x=1 \). \(f(1) \) is not defined.

\(x=5 \). \(f(5) \rightarrow v \) \(f(5) \) not defined.

\(x=2 \)

\(\lim_{x \to 2^-} f(2) = 1 \)
\(\lim_{x \to 2^+} f(2) = 3 \)
\(\lim_{x \to 2} f(2) \neq 1 \)
\(\lim_{x \to 2} f(2) \neq 3 \)

\(x=3 \).

\(\lim_{x \to 3^+} f(3) = 1 \)
\(\lim_{x \to 3^-} f(3) = 2 \)
\(\lim_{x \to 3} f(3) \neq 1 \)
\(\lim_{x \to 3} f(3) \neq 2 \)
\(\lim_{x \to 3} f(3) \) DNE (Does Not Exist)
Continuity Rule.

If f and g are continuous at a, then the following functions are also continuous at a.

a. $f + g$

b. $f - g$

c. cf

d. fg

e. $\frac{f}{g}$, $g(a) \neq 0$

f. $(f(x))^n$.

Why? We know $\lim_{x \to a} f(x) = f(a)$, $\lim_{x \to a} g(x) = g(a)$.

Want: $f + g$ is continuous at a.

To say: I need $\lim_{x \to a} (f(x) + g(x)) = f(a) + g(a)$.

Because $\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = f(a) + g(a)$.
Theorem 2.10.

(a) polynomial function.
 is continuous at all \(x \).

(b) rational function of
 the form \(\frac{P(x)}{Q(x)} \).
 continuous at all \(x \), \(Q(x) \neq 0 \).

Ex. \(f(x) = \frac{x^5 + 6x + 17}{x^2 - 9} \):

for what values \(x \), \(f(x) \) continuous.

\(x^2 - 9 \neq 0 \), \(x \neq -3, 3 \).

\(f(x) \) is continuous at all \(x \)
except \(-3, 3 \).
\[f(g(x)) = \left(\frac{x^4 - 2x + 2}{x^6 + 2x^4 + 1} \right)^{10} \]

\[g(x) \text{ continuous at } 0 \Rightarrow \]
\[g(x) \text{ is rational function.} \]

\[0^6 + 20^4 + 1 = 1 \Rightarrow \]
\[f(g(0)) = f(0) \text{ continuous at } x = 0 \]
\[g(0) = \frac{2}{1} = 2. \]

\[f(x) \text{ is continuous at } 2. \]

\[\lim_{x \to 0} f(g(x)) = f(g(0)) = f(2) = 2^0. \]

Answer: 2^0.
Theorem 2.12

\[\lim_{x \to a} f(g(x)) = f(g(a)) \]

(1) If \(g \) is continuous at \(a \),
\(f \) is continuous at \(g(a) \),
Then:
\[\lim_{x \to a} f(g(x)) = f(g(a)) \]

Ex. \[\lim_{x \to 0} \left(\frac{x^4 - 2x + 2}{x^6 + 2x^4 + 1} \right)^{10} \]

\(f(x) = \frac{x^4 - 2x + 2}{x^6 + 2x^4 + 1} \)
\(f(x) = x^{10} \)
(2) If $\lim_{x \to a} g(x) = L$ and f continuous at L, then $\lim_{x \to a} f(g(x)) = f(L)$. $g(a)$ may not exist.