Instantaneous velocity

Ex. Suppose that a rock launched vertically upward from the ground with speed 96 ft/s.

From physics, the position of the rock after t seconds given by $S(t) = -16t^2 + 96t$.

Q: What's the instantaneous velocity at $t = 1$ s?

$t = 1$ s \quad S(1) = 80 \text{ ft}$

$t = 2$ s \quad S(2) = 128 \text{ ft}$

$t = 3$ s \quad S(3) = 144 \text{ ft}$

\ldots
average velocity at \([1, 2]\)

\[V_{av} = \frac{128 - 50}{1} = 48 \text{ ft/s} \]

\([1, t]\)

\[V_{avg} = \frac{S(t) - S(1)}{t - 1} = \frac{S(t) - 80}{t - 1} \]

\[V_{int} = \lim_{t \to 1} V_{avg} = \lim_{t \to 1} \frac{S(t) - 80}{t - 1} \]
<table>
<thead>
<tr>
<th>to</th>
<th>t_i</th>
<th>\Delta t</th>
<th>V_{avg} (ft/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>48</td>
</tr>
<tr>
<td>1</td>
<td>1.5</td>
<td>0.5</td>
<td>56</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>62.4</td>
</tr>
<tr>
<td>1</td>
<td>1.001</td>
<td>0.001</td>
<td>63.84</td>
</tr>
<tr>
<td>1</td>
<td>1.001</td>
<td>0.001</td>
<td>63.984</td>
</tr>
</tbody>
</table>

\[V_{ins} = \lim_{t \to 1} V_{avg} = 64 \text{ ft/s} \]
\[V_{\text{avg}} = \text{slope of the secant line.} \]

\[\text{tangent line} \]

\[\text{tangent line} \]

\[V_{\text{int}} = \text{slope of tangent line.} \]

\[m_{\text{tan}} = \lim_{t \to 1} \frac{S(t) - S(1)}{t - 1} \]
Definition

Limit of a function.

Suppose the function \(f \) is defined for all \(x \) near \(a \) except possibly at \(a \). If \(f(x) \) is arbitrarily close to \(a \), for all \(x \) sufficiently close to \(a \), we write \(\lim_{x \to a} f(x) = L \).

and say the limit of \(f(x) \) approaches a equal \(L \).

Remarks: \(\lim_{x \to a} f(x) \) not necessarily equal to \(f(a) \) can be different than \(f(a) \).
\[\lim_{x \to 2} f(x) = 3. \]
\[f(2) = 5 \]

For \(f(x) \):

For \(g(x) \):

\[g(0) = 1 \]
\[g(1) = 2 \]
\[\lim_{x \to 1} g(x) = 2 \]
One sided limit

1. Right sided limit.

Suppose f is defined for all x near a, with $x > a$. If $f(x)$ is arbitrarily close to L for all x sufficiently close with $x > a$, we write:

$$\lim_{{x \to a^+}} f(x) = L$$
2. Left sided limit.

... if \(f(x) \) is arbitrarily close to \(L \) for \(x \) sufficiently close with \(x < a \)

\[
\lim_{{x \to a^-}} f(x) = L
\]

Theorem 2.1

Assume \(f(x) \) is defined for all \(x \) near \(a \) except possibly at \(a \). Then \(\lim_{{x \to a}} f(x) = L \) if and only if \(\lim_{{x \to a^+}} f(x) = L \) and \(\lim_{{x \to a^-}} f(x) = L \).
a. \(\lim_{x \to 2^-} g(x) = 4 \)

b. \(\lim_{x \to 2^+} g(x) = 1 \)

c. \(\lim_{x \to 2} g(x) = \text{does not exist. by theorem.} \)
Example

\[
\lim_{x \to 0} \cos \left(\frac{1}{x} \right) \quad ?
\]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\cos \left(\frac{1}{x} \right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.56238</td>
</tr>
<tr>
<td>0.0001</td>
<td>-0.95216</td>
</tr>
<tr>
<td>0.00001</td>
<td>-0.99996</td>
</tr>
<tr>
<td>0.000001</td>
<td>-0.36330</td>
</tr>
</tbody>
</table>

let \(x = \frac{1}{n\pi} \) \ n positive integer

\[
\cos \left(\frac{1}{x} \right) = \cos \left(\frac{1}{n\pi} \right) = \begin{cases} 1 & \text{if } n \text{ even} \\ -1 & \text{if } n \text{ odd} \end{cases}
\]

when \(n \) increases \(x \to 0 \)

\(\cos \left(\frac{1}{x} \right) \) oscillate between \(-1, 1 \)
\[\lim_{x \to 0} \cos x \quad \text{DO NOT EXIST.} \]