More on related rates. §3.11

Ex 1. A spherical balloon is being inflated at a rate of 13 cm³/sec. How fast is the radius changing when the balloon has radius 15 cm?

[Diagram of a sphere]

Volume of sphere:

\[V(t) = \frac{4}{3} \pi r^3 \]

WANT to find \(\frac{dr}{dt} \) when \(r = 15 \) cm.

Differentiate: \(\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt} \).

We know \(\frac{dV}{dt} = 13 \text{ cm}^3/\text{sec} \).
plug in. numbers.

\[13 = 4\pi \cdot (15)^2 \frac{dr}{dt} \]

\[\frac{dr}{dt} = \frac{13}{4\pi \cdot 15^2} \]

\[= \frac{13}{4\pi \cdot 225} \]

\[= \frac{13}{900\pi} \text{ cm/sec} \]

P22b 6x4

An observer stands 200 meters from the launch site of a hot-air balloon. The balloon rises vertically at a constant rate 4 m/s. How fast the angle of elevation of the balloon increases 30 seconds after launch.
WANT to find \(\frac{d\theta}{dt} \) when \(t = 3a \) sec.

We know \(\frac{dy}{dt} = 4 \text{ m/s} \).

\(\theta \): angle of elevation

\[
\tan \theta(t) = \frac{Y(t)}{Zo} \tag{1}
\]

When \(t = 30 \text{ sec} \), \(Y(t) = 4 \text{ m/s} \cdot 30s. \)

\[
= 120 \text{ m}.
\]

Differentiate (1):

\[
\sec^2 \theta \frac{d\theta}{dt} = \frac{1}{200} \cdot \frac{dy}{dt}
\]

\[
\sec^2 \theta = \frac{1}{\cos^2 \theta}
\]

\[
\frac{d\theta}{dt} = \frac{1}{200} \cdot 4 \cdot \frac{1}{\sec^2 \theta}
\]

\[
= \frac{1}{50} \cos^2 \theta
\]
\[
\cos \theta = \frac{200}{\sqrt{200^2 + 120^2}} \approx 0.86
\]

Plug in \(\cos \theta \).

\[
\frac{dB}{dt} = \frac{1}{50} \cdot 0.86^2 \text{ rad/sec.}
\]
§4.1 Maxima & Minima.

Definition.

A function \(f \) is defined on a set \(D \).

If \(f(c) \geq f(x) \) for every \(x \) in the set \(D \), \(f(c) \) is an absolute maximum.

If \(f(c) \leq f(x) \) for every \(x \) in \(D \), \(f(c) \) is an absolute minimum.

Ex. 2. \(y = x^2 \) on \([0, 2]\)
Ex 2.

\[y = x^2 \] on \((-\infty, \infty)\)

abs min is \(0\).
No absolute maximum.

Ex 3.

\[y = x^2 \] on \((0, 2)\)

No absolute maximum nor absolute minimum.
Question. Does a function \(f \) always have abs. max. or min. on a closed interval \([a, b]\)?

\[
\begin{align*}
 f(x) &= \begin{cases}
 0 & 0 < x < 1 \\
 1 & x = 1
\end{cases} \\
 \text{not continuous on } [0, 1] \\
\text{no absolute max.} \\
\text{absolute min is 0.}
\end{align*}
\]

\textbf{Thm. Extreme Value Theorem.}

A function that is \textit{continuous} on a closed \([a, b]\) has an absolute maximum value and absolute minimum value on the interval.