
II. Fourier Series 7 Jan ’05

A. Signals; Periodicity

A signal is a complex-valued function of one real variable—typically, f = f(t) =
u(t) + iv(t) for u, v:R→ R.

Stereo. Think of u(t) = Re {f(t)} and v(t) = Im {f(t)} as independent channels of
a single signal, like stereo.

Periodicity. A signal f is periodic if some T > 0 obeys

(∗) f(t+ T ) = f(t) for all t.

Say “f is T -periodic” when this happens. Sketch some examples.

Minimality. If f is T -periodic, it is automatically 2T -periodic:

f(t+ 2T ) = f([t+ T ] + T ) = f(t+ T ) = f(t).

Indeed, f is nT -periodic for every n = 1, 2, 3, . . .. The smallest T > 0 compatible
with (∗) is the fundamental period for f ; it’s typically a time in seconds.

B. Harmonic Oscillators

A simple periodic function (sketch) is

u(t) = A cos(ωt− φ).

Amplitude A ≥ 0, angular frequency ω > 0, phase φ ∈ R. Fcn cos is periodic with
fundamental period 2π, so fundamental period T for u obeys u(t+ T ) = u(t) with

ω(t+ T )− φ = [ωt− φ] + 2π, i.e., T =
2π
ω
.

Here ω = 2π/T is the angular frequency in rad/sec. Engineers measure cycle-
frequency in Hz = cycle/sec: this is f = 1/T = ω/(2π). Typical values: AC hum
is 60 Hz; Cello’s open C-string is 65.4 Hz; Violin A is 440 Hz; Squeak is 104 Hz;
AM 600 is 6× 105 Hz; CFOX is 9.73× 107 Hz; My Computer is 2.8× 109 Hz; Light
oscillates at ??? Hz.

Alternate form. u(t) = a cos(ωt) + b sin(ωt).

Reconciliation. Trig identity ⇒

A cos(ωt− φ) = A cos(φ) cos(ωt) + A sin(φ) sin(ωt).
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2 PHILIP D. LOEWEN

Matching:

a = A cos(φ), b = A sin(φ), i.e., A =
√
a2 + b2, (cosφ, sinφ) =

(
a

A
,
b

A

)
.

Complex Representations.

eiθ = cos(θ) + i sin(θ)

e−iθ = cos(−θ) + i sin(−θ) = cos(θ)− i sin(θ)

]
=⇒

 cos(θ) =
eiθ + e−iθ

2
,

sin(θ) =
eiθ − e−iθ

2i
.

Two Channel Oscillator with Shared Frequency. Choose same frequency ω in
two channels, writing

u(t) = a1 cos(ωt) + b1 sin(ωt), v(t) = a2 cos(ωt) + b2 sin(ωt).

Note that a1, b1, a2, b2 can be arbitrary real numbers; let

f(t) = u(t) + iv(t). (1)

In complex-exponential form,

f(t) =
a1 + ia2

2
(
eiωt + e−iωt

)
+
b1 + ib2

2i
(
eiωt − e−iωt

)
=
(

(a1 + b2) + i(a2 − b1)
2

)
eiωt +

(
(a1 − b2) + i(a2 + b1)

2

)
e−iωt

def= c1e
iωt + c−1e

−iωt. (2)

10 Jan ’05

Here c1 =
(a1 + b2) + i(a2 − b1)

2
, c−1 =

(a1 − b2) + i(a2 + b1)
2

. The trigonometric

expression in (1) and the exponential expression in (2) carry the same information
(each involves four real constants), but (2) is far more convenient.

Important Notes:

1. Signal f is real-valued (v ≡ 0 on complex channel)
⇔ a2 = 0 = b2 ⇔ c1 = (a1 − ib1) /2, c−1 = (a1 + ib1) /2 ⇔ c−1 = c1.

2. Signal f is even (pure cosines only in both channels)
⇔ b1 = 0 = b2 ⇔ c1 = 1

2 (a1 + ia2), c−1 = 1
2 (a1 + ia2) ⇔ c−1 = c1.

3. Signal f is odd (pure sines only in both channels)
⇔ a1 = 0 = a2 ⇔ c1 = 1

2 (b2 − ib1), c−1 = 1
2 (− b2 + ib1) ⇔ c−1 = −c1.
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II. Fourier Series 3

C. Fourier Synthesizer [Signal Generator]

Pick any ω > 0 and use it throughout this discussion. Imagine a device that gener-
ates different periodic signals with fundamental angular frequency ω. The signal is
determined by a doubly-infinite sequence of complex numbers:

Input: any complex sequence
(ck)k∈Z = (. . . , c−2, c−1, c0, c1, c2, . . .)

|
↓

FOURIER
SYNTHESIZER

|
↓

Output: the signal

f̃(t) = c0 +
(
c1e

iωt + c−1e
−iωt)+

(
c2e

i2ωt + c−2e
−i2ωt)+ · · · =

∞∑
k=−∞

cke
ikωt.

The input values (entries in sequence c) are called the Fourier coefficients in f̃ .

Technicalities. 1. For each t ∈ R, the value f̃(t) is defined by this limit:

f̃(t) = lim
N→∞

N∑
k=−N

cke
ikωt.

2. We allow only input “vectors” c that make this number finite:

∞∑
k=−∞

|ck|2 = lim
N→∞

N∑
k=−N

|ck|2.

(This is automatic if ck = 0 for all k ∈ Z with a finite number of exceptions.)

Online Demonstration (strongly recommended). Try the applet at this ad-
dress. It makes sounds as well as pictures:

http://www.phy.ntnu.edu.tw/java/sound/sound.html .

Calculated Example. Let ω = 1. Find and plot the synthesizer output if the input
vector c = (ck)∞k=−∞ has all ck = 0 except for these:

c−1 = −1, c0 = π/4, c1 = 1, c2 =
i

3
, c3 = −1

5
.
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4 PHILIP D. LOEWEN

Solution. By Euler’s formula, the given choices produce the 2π-periodic signal

f̃(t) =
∞∑

k=−∞
cke

ikt

= · · ·+ 0 + c−1e
−it + c0 + c1e

it + c2e
2it + c3e

3it + 0 + · · ·

= −e−it +
π

4
+ eit +

i

3
e2it − 1

5
e3it

=
[
π

4
− 1

3
sin(2t)− 1

5
cos(3t)

]
+ i

[
2 sin(t) +

1
3

cos(2t)− 1
5

sin(3t)
]

−4 −2 0 2 4
−2

−1

0

1

2

k

R
e(

c k)

Input vector (real channel)

−4 −2 0 2 4
−2

−1

0

1

2

k

Im
(c

k)

Input vector (imaginary channel)

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

t/π

R
e(

f(
t)

)

Output signal (real channel)

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

t/π

Im
(f

(t
))

Output signal (imaginary channel)

Properties of f̃ . Our single-frequency study above makes these believable:

1. Signal f̃ is real-valued (i.e., Im(f(t)) = 0 always) ⇔ c−k = ck for each k ∈ Z.

2. Signal f̃ is even (i.e., f(−t) = f(t) always) ⇔ c−k = ck for each k ∈ Z.

3. Signal f̃ is odd (i.e., f(−t) = −f(t) always) ⇔ c−k = −ck for each k ∈ Z.

4. f is T -periodic, with T = 2π/ω.
[Reason: each summand is T -periodic . . . einω[t+T ] = einωteinω(2π/ω) = einωt.]
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II. Fourier Series 5

D. Fourier Analyzer [Spectrometer]

Code-breaking game: a periodic signal with fundamental frequency ω is given. We
suspect it is being generated by a Fourier Synthesizer, i.e., it has the form

f̃(t) =
∞∑

k=−∞
cke

ikωt

for some vector of Fourier coefficients c = (. . . , c−1, c0, c1, . . .).

Question. What is c?

Answer. Extract one component at a time. Focus on subscript m. To find cm,
notice that for any k ∈ Z,

k 6= m =⇒
∫ T

0

eikωte−imωt dt =
∫ T

0

ei(k−m)ωt dt =
ei(k−m)ωt

i(k −m)ω

∣∣∣∣T
t=0

= 0,

(because ωT = 2π makes ei(k−m)ωT = 1 = e0)

k = m =⇒
∫ T

0

eikωte−imωt dt =
∫ T

0

1 dt = T.

This is an “orthogonality property” of the family of functions{
. . . , e−i2ωt, e−iωt, 1, eiωt, ei2ωt, . . .

}
.

Exploit it: multiply f̃(t) shown above by e−imωt and integrate:∫ T

0

f̃(t)e−imωt dt =
∫ T

0

( ∞∑
k=−∞

cke
ikωt

)
e−imωt dt

=
∞∑

k=−∞
ck

(∫ T

0

eikωte−imωt dt

)
= · · ·+ 0 + 0 + cmT + 0 + 0 + · · · .

This gives a formula valid for each m ∈ Z:

cm =
1
T

∫ T

0

f̃(t)e−imωt dt.

Now remember that ω = 2π/T . When we define ` = T/2, so the period is T = 2`,
we have ω = π/` and

f̃(t) =
∞∑

k=−∞
cke

ikπt/` ⇐⇒ cm =
1
2`

∫ 2`

0

f̃(t)e−imπt/` dt for each m ∈ Z.
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6 PHILIP D. LOEWEN

Spectral Analysis. Imagine the coefficient-extraction process as a machine. The
period T > 0 is fixed in advance.

Input: a T -periodic signal
f = f(t)

|
↓

THE FOURIER ANALYZER
|
↓

Output: The sequence c = (ck)∞k=−∞, where

cm =
1
T

∫ T

0

f(t)e−imωt dt, m ∈ Z.

Summary. The Fourier Analyzer reverses the operation of the Fourier Synthesizer.
If we put a sequence c of Fourier coefficients into the synthesizer, a signal f̃ comes
out. Putting that signal f̃ into the analyzer will reproduce the original coefficients:

sequence
c = (ck) →

FOURIER
SYNTHESIZER

→ signal
f̃

→ FOURIER
ANALYZER

→
sequence
c = (ck) .

E. Pointwise Convergence

We continue to work with a specific angular frequency ω > 0, using the definitions
T = 2π/ω (the fundamental period) and ` = T/2 (the half-period).

We can put any T -periodic signal f into the Fourier analyzer, whether it is
generated by the synthesizer or not. The analyzer will produce a vector of Fourier
coefficients. These obviously contain some information about f , but how much?
Schematically, what will we get when we put f through the following process?

Signal
f(t)

→ FOURIER

ANALYZER
→

sequence
c = (ck) →

FOURIER

SYNTHESIZER
→

Signal

f̃(t) =
∞∑

k=−∞
cke

ikωt .

12 Jan ’05

Example. Suppose T = 2π. Let f be 2π-periodic and obey f(t) = t for 0 < t < 2π.
Find the Fourier coefficients for f and plot the Fourier reconstruction f̃ corresponding
to these coefficients on the interval [−4π, 4π].

Solution. It’s nice to have a sketch of f . The reader is asked to supply this. No-
tice that the numerical values of f(0), f(±2π), f(±4π), . . . , are not specified in the
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II. Fourier Series 7

problem statement. They are not needed, because isolated point-values of f have no
influence on the values of integrals involving f .

The Fourier coefficients c = (cm)m∈Z are given by

cm =
1

2π

∫ 2π

0

te−imt dt, m ∈ Z.

Integration by parts gives this general formula, valid whenever a 6= 0:∫
teat dt = t

(
eat

a

)
−
∫ (

eat

a

)
dt =

t

a
eat − 1

a2
eat,

Using this with a = −im (provided m 6= 0) gives

cm =
1

2π

[(
t

−im −
1

i2m2

)
e−imt

]2π

t=0

=
1

2π

[(
− 2π
im

+
1
m2

)
−
(

1
m2

)]
=

i

m
.

A separate calculation is needed for the case where m = 0: since ei0t = 1,

c0 =
1

2π

∫ 2π

0

t dt = π.

Combining these results tells us the vector of Fourier coefficients:

c = (cm)m∈Z , where cm =
{
π, if m = 0,
i/m, if m 6= 0.

This vector is represented pictorially below.

Putting the Fourier coefficients just calculated into the Fourier Synthesizer gives
a function f̃ . This signal obeys f̃(t) = f(t) at all points in the basic interval (0, 2π)
because f is continuous there. Also, f̃ has the jump-averaging property shared by
all signals emerging from the Fourier Synthesizer. Hence f̃(2πn) = π for all n ∈ Z.

−10 −5 0 5 10
−1

0

1

2

3

4

k

R
e(

c k)

Synthesizer input (real channel)

−10 −5 0 5 10
−1.5

−1

−0.5

0

0.5

1

1.5

k

Im
(c

k)

Synthesizer input (imaginary channel)

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

2

3

4

5

6

7

t/π

R
e(

f(
t)

)

Synthesizer Output (real channel)

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

t/π

Im
(f

(t
))

Synthesizer Output (imaginary channel)
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8 PHILIP D. LOEWEN

Partial Sums; Convergence. Given a vector of Fourier coefficients (. . . , c−1, c0, c1, . . .),
using just the middle 2N + 1 terms produces this smooth periodic signal:

SN (t) =
N∑

k=−N
cke

ikωt.

Call this a partial sum, in contrast to the full series

f̃(t) =
∞∑

k=−∞
cke

ikωt.

By definition, for each real t (each treated separately),

f̃(t) = lim
N→∞

N∑
k=−N

cke
ikωt = lim

N→∞
SN (t).

The limit process preserves periodicity, but not smoothness: the function f̃ may have
corners or even jump discontinuities!

Jump-Averaging. We call a signal h jump-averaging if it obeys

h(t) =
h(t−) + h(t+)

2
for all t ∈ R.

On the right we are using the notation

h(t−) = lim
x→t
x<t

h(x), h(t+) = lim
x→t
x>t

h(x).

At any point t where h is continuous, we get h(t−) = h(t) = h(t+), so the jump-
averaging property is satisfied. But if h is discontinuous at t, the property holds only
when the function value lies exactly halfway between the values one would predict
using one-sided limits. This is relevant because (under reasonable hypotheses on the
input c)

All functions produced by the Fourier Synthesizer are jump-averaging.

Recall the proposed process

Signal
f(t)

→ FOURIER

ANALYZER
→

sequence
c = (ck) →

FOURIER

SYNTHESIZER
→

Signal

f̃(t) =
∞∑

k=−∞
cke

ikωt .

Our main theorem says that this process “cleans up” the input signal f by producing
a jump-averaging version f̃ .
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II. Fourier Series 9

Theorem (Pointwise Convergence). Suppose f :R → C is T -periodic and both

f, f ′ are piecewise continuous. Then f̃(t) is also T -periodic, and

f̃(t) =
f(t−) + f(t+)

2
for all t ∈ R.

(In particular, f̃(t) = f(t) whenever t is a continuity point of f .)

The theorem lets us graph the Fourier reconstruction f̃ for a given signal f without
any calculation.

(a) Pick any open interval of length T . Graph the continuous part of f there.
(Leave holes in graph at discontinuities.)

(b) Make a T -periodic extension.

(c) Fill holes by averaging jumps.
14 Jan ’05

Example. Suppose

f(t) =

{
t, for 0 ≤ t < π,
1, for t = π,
π, for π < t < 2π,

and f(t) = f(t+ 2π) for all t. Let f̃(t) =
∞∑

k=−∞
cke

ikt be the Fourier series for f .

(a) Graph f and f̃ on interval [−4π, 4π].

(b) Find the Fourier coefficients ck.

Solution. (a) Here is a sketch of the given periodic function f . Function values at
discontinuity points are shown as extra-large dots:

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

2

3

4

t/π

f(
t)

Here is the Fourier synthesizer output function f̃ . Its values at continuity points
match the values of f exactly, but jump-averaging repositions the function values
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10 PHILIP D. LOEWEN

at the discontinuity points:

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

2

3

4

t/π

S
yn

th
es

iz
ed

 f(
t)

(b) Break up the integration interval [0, T ] into subintervals on which the given
function f has a simple form, but keep the same factor 1/T out front:

cm =
1
T

∫ T

t=0

f(t)e−imt dt

=
1

2π

[ ∫ π

0

te−imt dt+
∫ 2π

π

πe−imt dt

]
Students can work out the details. They should get

m = 0 =⇒ c0 =
3π
4
,

m 6= 0 =⇒ cm =
(

(−1)m − 1
2πm2

)
+

i

2m
.

F. Other Convergence Concepts

Suppose a T -periodic signal f is given; let ω = 2π/T . Assume f is jump-averaging,
so f ≡ f̃ . Recall the partial sums

SN (t) =
N∑

k=−N
cke

ikωt,

built using the Fourier coefficients

ck =
1
T

∫ T

0

f(t)e−ikωt dt, k ∈ Z.

Question: How can we interpret a statement like, “SN ≈ f for N large”?

Subtlety: To measure the distance between complex constants z and w, the single
number |w − z| does the job: it’s zero when w = z and small when w ≈ z. But
when we discuss the discrepancy between signals SN and f , the analogous quantity
|SN (t)− f(t)| is time-varying. This leads to several non-equivalent possible ways to
capture the informal idea “SN − f is small” in a precise mathematical statement.
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II. Fourier Series 11

Three Convergence Concepts: Each of these says a different kind of discrepancy
between SN and f can be made arbitrarily small by summing enough terms.

1. Pointwise Convergence: lim
N→∞

|SN (t)− f(t)| = 0 for each t ∈ R.

This tests discrepancy point-by-point. The number of terms considered “enough”
may differ from one point to another.

2. Uniform Convergence: lim
N→∞

[
max
t∈R
|SN (t)− f(t)|

]
= 0.

This tests the maximum (worst-case) discrepancy. A large number of terms will
make the discrepancy small everywhere at once.

3. Mean-Square Convergence: lim
N→∞

[
1
T

∫ T

0

|SN (t)− f(t)|2 dt
]

= 0.

This tests the average squared-discrepancy over one period.

Discussion. Mean-square convergence is the most common. It happens whenever
both f and f ′ are piecewise continuous, and also in some more general cases.

Pointwise convergence was discussed in the previous section. Whenever both f
and f ′ are piecewise continuous, pointwise convergence is guaranteed.

Uniform convergence is the nicest kind of the three, but it’s not always present.
We will get uniform convergence whenever f is continuous on R and f ′ is piece-
wise continuous on R, but if f has discontinuities uniform convergence will fail.
This is the Gibbs-Wilbraham Phenomenon—see textbook. (Optional: The condition∑∞
k=−∞ |ck| < +∞ guarantees uniform convergence, by the Weierstrass M -test.)

Convergence Rate; Coefficient Estimates. (Out of time . . . maybe later.)

G. Evaluation Tricks and Special Forms

Standard Setup. Let f be T -periodic with f, f ′ piecewise continuous. Define ω =
2π/T and ` = T/2. Continue with these assumptions throughout this section.

Exact Values. For every integer k,

eikπ = (−1)k, ei(2k−1)π/2 = (−1)k+1i,

cos(kπ) = (−1)k, cos((2k − 1)π/2) = 0,

sin(kπ) = 0, sin((2k − 1)π/2) = (−1)k+1.

Please apply these simplifications whenever you solve problems. It is not required to
simplify the expressions sin(k π2 ) and cos(k π2 ): these generate four-step sequences for
which a concise expression is not immediately available.
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12 PHILIP D. LOEWEN

The Periodicity Trick. When θ = 0, the Fourier coefficients for f are

ck =
1
T

∫ θ+T

θ

f(t)e−ikωt dt, k ∈ Z. (∗)

But in fact, (∗) remains true for any and all real θ, because the function integrated
here is T -periodic. A popular alternative to θ = 0 is θ = −`: it gives

ck =
1
2`

∫ `

−`
f(t)e−ikt/` dt, k ∈ Z. (∗∗)

Trigonometric Form. Adding terms in pairs lets us rearrange the usual series as
follows:

f̃(t) =
∞∑

k=−∞
cke

ikωt = c0 +
∞∑
k=1

[
cke

ikωt + c(−k)e
−ikωt] .

In the second form, we notice

cke
ikωt + c(−k)e

−ikωt = ck [ cos(kωt) + i sin(kωt)] + c(−k) [ cos(kωt)− i sin(kωt)]

= (ck + c−k) cos(kωt) + i
(
ck − c(−k)

)
sin(kωt),

so by defining ak = ck + c−k and bk = i(ck − c−k), we get the form

f̃(t) =
a0

2
+
∞∑
k=1

(ak cos(kωt) + bk sin(kωt)) .

By definition,

ak =
1
T

∫ T

0

f(t)e−ikωt dt+
1
T

∫ T

0

f(t)e−i(−k)ωt dt

=
1
T

∫ T

0

f(t)
[
eikωt + e−ikωt

]
dt =

2
T

∫ T

0

f(t) cos(kωt) dt,

bk =
i

T

∫ T

0

f(t)e−ikωt dt− i

T

∫ T

0

f(t)e−i(−k)ωt dt

=
−i
T

∫ T

0

f(t)
[
eikωt − e−ikωt

]
dt =

2
T

∫ T

0

f(t) sin(kωt) dt,

Using the periodicity trick above gives this summary statement:

Trigonometric Fourier Series

f̃(t) =
a0

2
+
∞∑
k=1

(
ak cos

(
kπt

`

)
+ bk sin

(
kπt

`

))

ak =
1
`

∫ `

−`
f(t) cos

(
kπt

`

)
dt, k = 0, 1, 2, . . . ,

bk =
1
`

∫ `

−`
f(t) sin

(
kπt

`

)
dt, k = 1, 2, . . . .
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II. Fourier Series 13

Important: This is the same function f̃ as before: only its algebraic appearance
has changed! Complex-valued signals f are still eligible (they produce complex ak,
bk), but it’s clear that if f is real-valued then all ak, bk will be real-valued as well.
Moreover, simple algebra gives

ak = ck + c−k,

bk = i(ck − c−k)

}
⇐⇒

{
ck = 1

2
(ak − ibk)

c−k = 1
2 (ak + ibk).

(∗∗)

We deduce an equivalence we have mentioned before:

f̃ is real-valued ⇐⇒ ak, bk ∈ R for all k ⇐⇒ c(−k) = ck for all k.

Textbook Support. Read Boyce/DiPrima Sections 10.2–10.4, using line (∗∗) to
translate our preferred complex-exponential form into their preferred trigonometric
form.

Average Value Trick. In most examples, the constant term in the Fourier series
(c0 in the complex form, a0/2 in the trig form) must be calculated separately from
all the rest. It’s

a0

2
= c0 =

1
T

∫ T

0

f(t) dt,

the average value of f over a single period. (Often you can find it geometrically.) In
electrical terminology, this number is the “DC component”, “DC offset” or “bias” in
the signal f .

Odd Symmetry: Simplifications and Extensions. Suppose our 2`-periodic func-
tion f is also odd, which means f(−t) = −f(t) for all t. In this case we get

ak =
1
`

∫ `

−`
f(t) cos

(
kπt

`

)
dt = 0 [integrand is odd],

bk =
1
`

∫ `

−`
f(t) sin

(
kπt

`

)
dt =

2
`

∫ `

0

f(t) sin
(
kπt

`

)
dt [integrand is even].

The Fourier series takes this simpler form, where all even components are removed :

Fourier Sine Series (FSS) for f : [0, `]→ C

f̃(t) =
∞∑
k=1

bk sin
(
kπt

`

)

bk =
2
`

∫ `

0

f(t) sin
(
kπt

`

)
dt, k = 1, 2, . . . .

Note, in particular, this fact we have mentioned before:

f̃ is odd ⇐⇒ ak = 0 for all k ⇐⇒ c(−k) = −ck for all k.
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Now for a significant extension. Imagine applying the boxed formulas to some arbi-
trary f (perhaps not even periodic) whose domain includes the interval [0, `]. Boldly
use the integrals above to define some constants bk, and plug those in the series above
to define a function f̃ . Call f̃ the Fourier Sine Series (FSS) for f . What does f̃ look
like? Just look at the series and remember the main convergence theorem:

ut f̃(t) = f(t) for each continuity point t of f in (0, `);

ut f̃ is an odd function;

ut f̃ is 2`-periodic;

ut f̃ is jump-averaging.

There is enough info here to graph f̃ exactly: it’s the Fourier series for the jump-
averaging, 2`-periodic, odd extension of f .

Even Symmetry: Simplifications and Extensions. Suppose our 2`-periodic
function f is also even, which means f(−t) = f(t) for all t. In this case we get

ak =
1
`

∫ `

−`
f(t) cos

(
kπt

`

)
dt =

2
`

∫ `

0

f(t) cos
(
kπt

`

)
dt [integrand is even],

bk =
1
`

∫ `

−`
f(t) sin

(
kπt

`

)
dt = 0 [integrand is odd].

The Fourier series takes this simpler form, where all odd components are removed :

Fourier Cosine Series (FCS) for f : [0, `]→ C

f̃(t) =
a0

2
+
∞∑
k=1

ak cos
(
kπt

`

)

ak =
2
`

∫ `

0

f(t) cos
(
kπt

`

)
dt, k = 1, 2, . . . .

Note, in particular, this fact we have mentioned before:

f̃ is even ⇐⇒ bk = 0 for all k ⇐⇒ c(−k) = ck for all k.

Now for a significant extension. Imagine applying the boxed formulas to some arbi-
trary f (perhaps not even periodic) whose domain includes the interval [0, `]. Boldly
use the integrals above to define some constants ak, and plug those in the series above
to define a function f̃ . Call f̃ the Fourier Cosine Series (FCS) for f . What does f̃
look like? Just look at the series and remember the main convergence theorem:

ut f̃(t) = f(t) for each continuity point t of f in (0, `);
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II. Fourier Series 15

ut f̃ is an even function;

ut f̃ is 2`-periodic;

ut f̃ is jump-averaging.

There is enough info here to graph f̃ exactly: it’s the Fourier series for the jump-
averaging, 2`-periodic, even extension of f .

Coefficient-Matching Trick. Let f : [0, 5]→ R be defined by

f(x) = 3 sin(3πx)− 7 sin(7πx) + 101 sin(8πx).

Find the Fourier series for f .

Solution. The given expression for f is continuous and 10-periodic as written so
f̃ = f . Hence

f(x) =
∞∑
n=1

bn sin
(
nπx

5

)
for some bn. Simply comparing this FSS form to the rearrangement

f(x) = 3 sin
(

15πx
5

)
− 7 sin

(
35πx

5

)
+ 101 sin

(
40πx

5

)
,

reveals b15 = 3, b35 = −7, b40 = 101, all other bn = 0. ////

See also Problem Set 1.

H. FSS Examples (for student practice—not shown in class)

Example 1. Find the Fourier Sine Series on 0 < x < π for this function:

f(x) =
{

1, if x 6= π/2,
0, if x = π/2.

Solution. Here ` = π—the simplest case. The Fourier Sine Analyzer gives out same
sequence as it would for constant function 1, namely

bn =
2
π

∫ π

0

1 sin(nx) dx =
2
π

[
− cos(nx)

n

]π
0

=
2
nπ

[1− cos(nπ)]

=
2
π

(
1− (−1)n

n

)
=
{

4/(nπ), if n odd,
0, if n even.

Stick this into Fourier Sine Synthesizer to get

f̃(x) =
∞∑
n=1

bn sin(nx) =
2
π

∞∑
n=1

(
1− (−1)n

n

)
sin(nx)

=
4
π

∑
n=1,3,5,...

1
n

sin(nx) =
4
π

∞∑
k=1

1
2k − 1

sin ((2k − 1)x) .

////
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16 PHILIP D. LOEWEN

Example 2. Let f(x) = |x|. Find the Fourier Sine Series on 0 < x < π.

Solution. All values outside the interval 0 < x < π are ignored. In this interval,
f(x) = x, so

bn =
2
π

∫ π

0

x sin(nx) dx

=
2
π

[
x

(
− cos(nx)

n

)∣∣∣∣π
x=0

−
∫ π

0

(
− cos(nx)

n

)
dx

]
=

2
π

[
− π

n
cos(nπ) +

sin(nx)
n2

∣∣∣∣π
x=0

]
= − 2

n
(−1)n.

////

Example 3. Find the FSS on [0, 2] and sketch f̃ , given

f(x) =


2, if x = 0,
1− x, if 0 < x < 1,
1, if x = 1,
0, if 1 < x ≤ 2.

Solution. Splitting and IBP give

bn =



2
nπ
− 0, if n even,

2
nπ
− 4
n2π2

, if n = 1, 5, 9, 13, . . .,

2
nπ

+
4

n2π2
, if n = 3, 7, 11, 15, . . ..

Reconstruct sketch as noted above. ////

Example 4. Give FSS for each of these functions on interval 0 < x < π:

f(x) = 1, g(x) = |sinx|, h(x) = |cosx|.

Solution. f(x) = 1 done before. On interval [0, π], we have g(x) = sin(x). This is a
FSS already, with b1 = 1 and all other bn = 0, giving g̃(x) = sin(x). Compare graphs
of g and g̃. Function h(x) takes work. Use some trig identities. ////

I. Parseval’s Equation

The key to this whole story is the orthogonality relation we first saw at the beginning
of Section D (here ω = 2π/T ):∫ θ+T

θ

eikωt e−ikmωt dt =
{

0, if k 6= m,
T, if k = m.
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II. Fourier Series 17

Recall our notation SN (t) =
N∑

k=−N
cke

ikωt. Orthogonality gives

∫ T

0

|SN (t)|2 dt =
∫ T

0

(
N∑

k=−N
cke

ikωt

)(
N∑

m=−N
cmeimωt

)
dt

=
N∑

k=−N

N∑
m=−N

∫ T

0

cke
ikωtcme

−imωt dt

=
N∑

k=−N
Tckck

= T

N∑
k=−N

|ck|2.

Now consider: f̃ and f behave identically for purposes of integration on [θ, θ+T ], so∫ T

0

|f(t)− SN (t)|2 dt =
∫ T

0

|f(t)|2 + |SN (t)|2 dt− 2 Re

(∫ T

0

f(t)SN (t) dt

)

=
∫ T

0

|f(t)|2 + |SN (t)|2 dt− 2 Re

(
N∑

k=−N
ck

∫ T

0

f(t)e−ikωt dt

)

=
∫ T

0

|f(t)|2 + |SN (t)|2 dt− 2T Re

(
N∑

k=−N
ck Tck

)

=
∫ T

0

|f(t)|2 dt− T
N∑

k=−N
|ck|2.

Now send N →∞: LHS tends to 0 (mean-square convergence), leaving

1
T

∫ T

0

|f(t)|2 dt =
∞∑

k=−∞
|ck|2.

This is Parseval’s Equation. It says that the RMS value for one period of signal f
is precisely captured by the generalized Pythagorean length of the vector of Fourier
coefficients. This is a significant relationship between the time-domain (where the real
signal lives) and the frequency-domain (where we look at the spectral components).
Understanding signals in both domains gives engineers great power and flexibility for
imagination and design.

Variations. The trigonometric form of Parseval’s identity says

f̃(t) =
a0

2
+
∞∑
k=1

(ak cos(kπt/`) + bk sin(kπt/`))

=⇒ 1
`

∫ `

−`

∣∣∣f̃(t)
∣∣∣2 dt =

a2
0

2
+
∞∑
k=1

(
|ak|2 + |bk|2

)
.
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18 PHILIP D. LOEWEN

Other special forms include

FSS: f̃(t) =
∞∑
k=1

bk sin(kπt/`) ⇒ 2
`

∫ `

0

∣∣∣f̃(t)
∣∣∣2 dt =

∞∑
k=1

|bk|2,

FCS: f̃(t) =
a0

2
+
∞∑
k=1

ak cos(kπt/`) ⇒ 2
`

∫ `

0

∣∣∣f̃(t)
∣∣∣2 dt =

a2
0

2
+
∞∑
k=1

|ak|2.

19 Jan ’05

Example. In Section H, Example 1, we have the FSS identity

1 =
∑

k=1,3,5,...

4
kπ

sin(kx), 0 < x < π.

Here ` = π, and the FSS form of Parseval’s identity gives

2
π

∫ π

0

|1|2 dt =
∑

k=1,3,5,...

16
k2π2

.

Evaluating the integral and rearranging gives

π2

8
=

∑
k=1,3,5,...

1
k2

=
1
12

+
1
32

+
1
52

+ · · · .

////

The derivation above produced a formula that is also useful when N is finite:

1
T

∫ T

0

|f(t)− SN (t)|2 dt =
∑
|k|>N

|ck|2.

This equation shows how the RMS error in the approximation f ≈ SN is exactly
accounted for by the high-frequency energy that is neglected when we use the partial
sum to replace the full series.
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