
Lior Silberman’s Math 535, Problem Set 4: Linear Lie groups

Closed matrix groups

Write glnR
def
= Mn(R) which we will interpret as the Lie algebra of GLn(R) with commutator

bracket [X ,Y ] = XY −Y X (addition and multiplication of matrices).
1. (The matrix exponential). Fix a norm on Rn and a corresponding operator norm on Mn(R) .

(a) Show that exp(X)=∑
∞
k=0

Xk

k! converges for all X ∈Mn(R) and that exp(X+Y )= exp(X)exp(Y )
if X ,Y commute.

(b) Conclude that exp((s+t)X)= exp(sX)exp(tX) for all s, t ∈R and in particular that exp(X)
is invertible for all X .

(c) Show that d
dt exp(tX) = X exp(tX).

(d) Let {ak}k≥1⊂R satisfy kak→ t and let Yk ∈Mn(R) satisfy Yk→ 0. Show that limk→∞ (I +ak(X +Yk))
k =

exp(tX).
(e) Show that log(g)=∑

∞
k=1

(−1)k+1

k (g−I) converges for ‖g− I‖< 1. Show that log(exp(X))=
X and exp(log(g)) = g hold for X ,g sufficiently close to 0, I respectively.

(f) Conclude that exp, log are local diffeomorphisms which are inverse to each other. Compute
their differentials at X = 0, g = I.

(g) For any direct sum decomposition Mn(R) =⊕r
i=1Vi for some linear subspaces Vi, show that

(Xi)i∈i 7→ ∏
r
i=1 exp(Xi) defines a local diffeomorphism Mn(R)→ GLn(R) (hint: inverse

function theorem).
(h) Examining the power series show that log(exp tX exp tY ) = t(X +Y )+ 1

2t2 [X ,Y ]+O(t3).

2. Now let G⊂ GLn(R) be a closed subgroup.
DEF A path in G is a differentiable curve γ : (−ε,ε)→ Mn(R) such that γ(0) = I. A null

sequence is a sequence (gi)
∞

i=1 ⊂ G\{I} with limi→∞ gi = I. Set:

g1 = R ·
{

lim
i→∞

loggi

‖loggi‖
| (gi)

∞

i=1 is a nullsequence and the limit exists
}

g2 = {X ∈Mn(R) | ∀t ∈ R : exp(tX) ∈ G}
g3 =

{
γ
′(0) | γ is a path in G

}
.

(a) Show that g1 ⊂ g2 ⊂ g3 ⊂ g1. (hint: for the first inclusion use 1(d) after raising gi to
appropriate powers).

DEF We write g for this subspace and call it the linear Lie algebra of G.
(b) Show that g is a subspace of glnR (hint: show that g2 is closed under rescaling and that g3

is closed under addition).
(c) Show that g is a Lie subalgebra of glnR.
(d) Since exp is locally invertible, to show that exp �g : g→ G is a local homeomorphism

it’s enough to show it’s localy surjective. For this fix a complement h such that g⊕ h =
Mn(R). Suppose that for each r > 0 there is gi with ‖gi− I‖ ≤ r and gi is not in the image
exp(B1(I)∩g). Using 1(g) to write gi = exp(Xi)exp(Yi) with Xi ∈ g and Yi ∈ h both tending
to zero. Show that Yi are zero from some point onward, and obtain a contradiction.

(c) Show that 1
t2 log(exp(tX)exp(tY )exp(−tX)exp(−tY )) = [X ,Y ]+O(t) and conclude that

[X ,Y ] ∈ g, so g is a Lie subalgebra of Mn(R).
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Linear groups over fields

Fix a field F of characteristic not equal to 2, and let V be a finite-dimensional F-vectorspace.

DEFINITION. A quadratic form is a non-degenerate symmetric bilinear form V ×V → F . A
symplectic form is a non-degenerate antisymmetric bilinear form.

3. (Orthogonal groups over fields) Fix a quadratic form on V where dimV = n.
(a) Show that the quadratic forms on Fn are exactly those of the form 〈u,v〉 = ∑i, j uiQi jv j

where Q ∈Mn(F) is symmetric and of full rank.
(b) (The polarization identity) Given a quadratic form define q(v) = 〈v,v〉. Show that we can

recover 〈u,v〉 from the quadratic polynomial q (hint: consider q(u+ v)).
(c) Find a nondegenerate quadratic form on F2 for which there is a vector v with q(v) = 0

(“isotropic vector”).
(d) Given a subspace W ⊂V define W⊥ = {v ∈V | ∀w ∈W : 〈v,w〉= 0}. Show that dimW +

dimW⊥ = dimV . The previous example shows that it’s possible that W⊥ =W .
(e) Show that there is a basis {ei}dimV

i=1 ⊂V such that
〈
ei,e j

〉
= 0 if i 6= j and such that 〈ei,ei〉 6=

0.
DEF Write OQ(F) for orthogonal group associated with a quadratic form Q:

OQ(F) = {g ∈ GL(V ) | ∀v ∈V : q(gv) = q(v)}
(f) Show that when F = R up to isomorphism the only orthogonal groups are

O(p,q) = OIp,q(R), Ip,q =

(
Ip 0pq

0qp −Iq

)
.

In particular we write O(n) = O(n,0).
FACT (“Sylvester’s law of intertia”) The different quadratic forms Ip,q are not equivalent to

each other. The only isomorphisms among the O(p,q) is that O(p,q)' O(q, p).

4. (Symplectic groups over fields) Fix a symplectic form on V .
(a) (Darboux’s Theorem) Show that there is a basis {ei}n

i=1 ∪ { fi}n
i=1 such that

〈
ei,e j

〉
=〈

fi, f j
〉
= 0 and such that

〈
ei, f j

〉
= δi j. In particular, dimF V is even.

(b) The symplectic group is the associated symmetry group

Sp〈·,·〉(F) = {g ∈ GL(V ) | ∀u,v ∈V : 〈gu,gv〉= 〈u,v〉} .
Show that up to conjugacy this group does not depend on the choice of symplectic form.

(c) Given u ∈V and a ∈ F , a symplectic transvection is the map Uu,a(v) = v+a〈v,u〉u. Show
that Uu,a ∈ Sp〈·,·〉(F).

(d) Show that the representation of the symplectic group of V on V is irreducible.
DEF Write Sp2n(F) for the symplectic group with respect to the standard form: Sp2n(F) ={

g ∈ GL2n(F) | gT Xg = X
}

where X =

(
0 In
−In 0

)
(In is the n×n identity matrix).

5. Show that the following are closed subgroups of GLn(R) and determine their Lie algebras.
(a) The special linear group SLn(R) = {g ∈ GLn(R) | detg = 1}.
(b) The orthogonal groups.
(c) The symplectic group.
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(d) The special orthogonal groups SO(p,q) = O(p,q)∩SLp+q(R).

6. Show that exp: 2R→ SL2(R) is not surjective.
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