Lior Silberman's Math 535, Problem Set 4: Linear Lie groups

Closed matrix groups

Write $\mathfrak{g l}_{n} \mathbb{R} \stackrel{\text { def }}{=} M_{n}(\mathbb{R})$ which we will interpret as the Lie algebra of $\mathrm{GL}_{n}(\mathbb{R})$ with commutator bracket $[X, Y]=X Y-Y X$ (addition and multiplication of matrices).

1. (The matrix exponential). Fix a norm on \mathbb{R}^{n} and a corresponding operator norm on $M_{n}(\mathbb{R})$.
(a) Show that $\exp (X)=\sum_{k=0}^{\infty} \frac{X^{k}}{k!}$ converges for all $X \in M_{n}(\mathbb{R})$ and that $\exp (X+Y)=\exp (X) \exp (Y)$ if X, Y commute.
(b) Conclude that $\exp ((s+t) X)=\exp (s X) \exp (t X)$ for all $s, t \in \mathbb{R}$ and in particular that $\exp (X)$ is invertible for all X.
(c) Show that $\frac{d}{d t} \exp (t X)=X \exp (t X)$.
(d) Let $\left\{a_{k}\right\}_{k \geq 1} \subset \mathbb{R}$ satisfy $k a_{k} \rightarrow t$ and let $Y_{k} \in M_{n}(\mathbb{R})$ satisfy $Y_{k} \rightarrow 0$. Show that $\lim _{k \rightarrow \infty}\left(I+a_{k}\left(X+Y_{k}\right)\right)^{k}=$ $\exp (t X)$.
(e) Show that $\log (g)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}(g-I)$ converges for $\|g-I\|<1$. Show that $\log (\exp (X))=$ X and $\exp (\log (g))=g$ hold for X, g sufficiently close to $0, I$ respectively.
(f) Conclude that exp,log are local diffeomorphisms which are inverse to each other. Compute their differentials at $X=0, g=I$.
(g) For any direct sum decomposition $M_{n}(\mathbb{R})=\oplus_{i=1}^{r} V_{i}$ for some linear subspaces V_{i}, show that $\left(X_{i}\right)_{i \in i} \mapsto \prod_{i=1}^{r} \exp \left(X_{i}\right)$ defines a local diffeomorphism $M_{n}(\mathbb{R}) \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ (hint: inverse function theorem).
(h) Examining the power series show that $\log (\exp t X \exp t Y)=t(X+Y)+\frac{1}{2} t^{2}[X, Y]+O\left(t^{3}\right)$.
2. Now let $G \subset \mathrm{GL}_{n}(\mathbb{R})$ be a closed subgroup.

DEF A path in G is a differentiable curve $\gamma:(-\varepsilon, \varepsilon) \rightarrow M_{n}(\mathbb{R})$ such that $\gamma(0)=I$. A null sequence is a sequence $\left(g_{i}\right)_{i=1}^{\infty} \subset G \backslash\{I\}$ with $\lim _{i \rightarrow \infty} g_{i}=I$. Set:

$$
\begin{aligned}
\mathfrak{g}_{1} & =\mathbb{R} \cdot\left\{\left.\lim _{i \rightarrow \infty} \frac{\log g_{i}}{\left\|\log g_{i}\right\|} \right\rvert\,\left(g_{i}\right)_{i=1}^{\infty} \text { is a nullsequence and the limit exists }\right\} \\
\mathfrak{g}_{2} & =\left\{X \in M_{n}(\mathbb{R}) \mid \forall t \in \mathbb{R}: \exp (t X) \in G\right\} \\
\mathfrak{g}_{3} & =\left\{\gamma^{\prime}(0) \mid \gamma \text { is a path in } G\right\} .
\end{aligned}
$$

(a) Show that $\mathfrak{g}_{1} \subset \mathfrak{g}_{2} \subset \mathfrak{g}_{3} \subset \mathfrak{g}_{1}$. (hint: for the first inclusion use 1 (d) after raising g_{i} to appropriate powers).
DEF We write \mathfrak{g} for this subspace and call it the linear Lie algebra of G.
(b) Show that \mathfrak{g} is a subspace of $\mathfrak{g l}_{n} \mathbb{R}$ (hint: show that \mathfrak{g}_{2} is closed under rescaling and that \mathfrak{g}_{3} is closed under addition).
(c) Show that \mathfrak{g} is a Lie subalgebra of $\mathfrak{g l}_{n} \mathbb{R}$.
(d) Since \exp is locally invertible, to show that $\exp { }_{\mathfrak{g}}: \mathfrak{g} \rightarrow G$ is a local homeomorphism it's enough to show it's localy surjective. For this fix a complement \mathfrak{h} such that $\mathfrak{g} \oplus \mathfrak{h}=$ $M_{n}(\mathbb{R})$. Suppose that for each $r>0$ there is g_{i} with $\left\|g_{i}-I\right\| \leq r$ and g_{i} is not in the image $\exp \left(B_{1}(I) \cap \mathfrak{g}\right)$. Using $1(\mathfrak{g})$ to write $g_{i}=\exp \left(X_{i}\right) \exp \left(Y_{i}\right)$ with $X_{i} \in \mathfrak{g}$ and $Y_{i} \in \mathfrak{h}$ both tending to zero. Show that Y_{i} are zero from some point onward, and obtain a contradiction.
(c) Show that $\frac{1}{t^{2}} \log (\exp (t X) \exp (t Y) \exp (-t X) \exp (-t Y))=[X, Y]+O(t)$ and conclude that $[X, Y] \in \mathfrak{g}$, so \mathfrak{g} is a Lie subalgebra of $M_{n}(\mathbb{R})$.

Linear groups over fields

Fix a field F of characteristic not equal to 2 , and let V be a finite-dimensional F-vectorspace.
Definition. A quadratic form is a non-degenerate symmetric bilinear form $V \times V \rightarrow F$. A symplectic form is a non-degenerate antisymmetric bilinear form.
3. (Orthogonal groups over fields) Fix a quadratic form on V where $\operatorname{dim} V=n$.
(a) Show that the quadratic forms on F^{n} are exactly those of the form $\langle u, v\rangle=\sum_{i, j} u_{i} Q_{i j} v_{j}$ where $Q \in M_{n}(F)$ is symmetric and of full rank.
(b) (The polarization identity) Given a quadratic form define $q(v)=\langle v, v\rangle$. Show that we can recover $\langle u, v\rangle$ from the quadratic polynomial q (hint: consider $q(u+v)$).
(c) Find a nondegenerate quadratic form on F^{2} for which there is a vector v with $q(v)=0$ ("isotropic vector").
(d) Given a subspace $W \subset V$ define $W^{\perp}=\{v \in V \mid \forall w \in W:\langle v, w\rangle=0\}$. Show that $\operatorname{dim} W+$ $\operatorname{dim} W^{\perp}=\operatorname{dim} V$. The previous example shows that it's possible that $W^{\perp}=W$.
(e) Show that there is a basis $\left\{e_{i}\right\}_{i=1}^{\operatorname{dim} V} \subset V$ such that $\left\langle e_{i}, e_{j}\right\rangle=0$ if $i \neq j$ and such that $\left\langle e_{i}, e_{i}\right\rangle \neq$ 0.

DEF Write $\mathrm{O}_{Q}(F)$ for orthogonal group associated with a quadratic form Q :

$$
\mathrm{O}_{Q}(F)=\{g \in \mathrm{GL}(V) \mid \forall v \in V: q(g v)=q(v)\}
$$

(f) Show that when $F=\mathbb{R}$ up to isomorphism the only orthogonal groups are

$$
\mathrm{O}(p, q)=\mathrm{O}_{I_{p, q}}(\mathbb{R}), \quad \quad I_{p, q}=\left(\begin{array}{cc}
I_{p} & 0_{p q} \\
0_{q p} & -I_{q}
\end{array}\right)
$$

In particular we write $\mathrm{O}(n)=\mathrm{O}(n, 0)$.
FACT ("Sylvester's law of intertia") The different quadratic forms $I_{p, q}$ are not equivalent to each other. The only isomorphisms among the $\mathrm{O}(p, q)$ is that $\mathrm{O}(p, q) \simeq \mathrm{O}(q, p)$.
4. (Symplectic groups over fields) Fix a symplectic form on V.
(a) (Darboux's Theorem) Show that there is a basis $\left\{e_{i}\right\}_{i=1}^{n} \cup\left\{f_{i}\right\}_{i=1}^{n}$ such that $\left\langle e_{i}, e_{j}\right\rangle=$ $\left\langle f_{i}, f_{j}\right\rangle=0$ and such that $\left\langle e_{i}, f_{j}\right\rangle=\delta_{i j}$. In particular, $\operatorname{dim}_{F} V$ is even.
(b) The symplectic group is the associated symmetry group

$$
\operatorname{Sp}_{\langle\cdot, \cdot\rangle}(F)=\{g \in \mathrm{GL}(V) \mid \forall \underline{u}, \underline{v} \in V:\langle g \underline{u}, g \underline{v}\rangle=\langle\underline{u}, \underline{v}\rangle\} .
$$

Show that up to conjugacy this group does not depend on the choice of symplectic form.
(c) Given $\underline{u} \in V$ and $a \in F$, a symplectic transvection is the map $U_{\underline{u}, a}(\underline{v})=\underline{v}+a\langle\underline{v}, \underline{u}\rangle \underline{u}$. Show that $U_{\underline{u}, a} \in \operatorname{Sp}_{\langle\cdot, \cdot\rangle}(F)$.
(d) Show that the representation of the symplectic group of V on V is irreducible.

DEF Write $\mathrm{Sp}_{2 n}(F)$ for the symplectic group with respect to the standard form: $\mathrm{Sp}_{2 n}(F)=$ $\left\{g \in \mathrm{GL}_{2 n}(F) \mid g^{T} X g=X\right\}$ where $X=\left(\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right)\left(I_{n}\right.$ is the $n \times n$ identity matrix $)$.
5. Show that the following are closed subgroups of $\mathrm{GL}_{n}(\mathbb{R})$ and determine their Lie algebras.
(a) The special linear group $\mathrm{SL}_{n}(\mathbb{R})=\left\{g \in \mathrm{GL}_{n}(\mathbb{R}) \mid \operatorname{det} g=1\right\}$.
(b) The orthogonal groups.
(c) The symplectic group.
(d) The special orthogonal groups $\mathrm{SO}(p, q)=\mathrm{O}(p, q) \cap \mathrm{SL}_{p+q}(\mathbb{R})$.
6. Show that exp: ${ }_{2} \mathbb{R} \rightarrow \mathrm{SL}_{\notin}(\mathbb{R})$ is not surjective.

