Math 501: Problem Session 7

Question: what is a "radical"?

Answer: an element of the form \(\sqrt[m]{\beta} \).

\(\Rightarrow \) a root of a polynomial of the form \(t^m - \beta \).

A "radical extension" is one obtained by successively adjoining radicals:

\[L = K(\alpha_1, \ldots, \alpha_k) \] where we have \(m_i \in \mathbb{Z}_{\geq 1} \) such that \(\alpha_i \in K(\alpha_1, \ldots, \alpha_{i-1}) \).

Example: \(K(\sqrt[3]{2}, \sqrt[3]{3 + 5}, \sqrt[8]{(5\sqrt[3]{2} + 2)^2 + \sqrt[3]{2}}) \)

(use the word "radical" rather than "root" because we want to talk about roots of polynomials)

If \(\Sigma \mid K \) is the splitting field of \(\overline{f} \in K[x] \), then \(\Sigma(\omega) = \sigma(\Sigma(\omega)) \downarrow \Sigma(\omega) \) / \(\Sigma(\omega) \)
reason, if \(f: \frac{1}{(x-\alpha_1)(x-\alpha_r)} \)

then \(\Sigma = K(\alpha_1, \ldots, \alpha_r) \)

so \(\Sigma(w): K(\alpha_1, \ldots, \alpha_r, w) = K(w)(\alpha_1, \ldots, \alpha_r) \)

Proof (\(\sigma \)): Let \(K \) finite, \(Gal(K) \), \(K < N_1, M_2 < L \)

\[G = Gal(L/K), \ H_i = Gal(L/M_i). \]

Suppose \(\sigma \in G \) has \(\sigma(M_1) = M_2 \)

then \(\tau \in H_2 \) iff \(\forall \alpha \in M_2, \ \tau(\alpha) = \alpha \)

iff \(\forall \alpha \in M_1, \ \tau(\sigma(\alpha)) = \sigma(\alpha) \)

iff \(\forall \alpha \in M_1, \ (\sigma^{-1}\tau)(\alpha) = \alpha \)

iff \(\sigma^{-1}\tau \in H_1 \),

i.e. \(H_2 = \sigma^{-1}H_2\sigma, \ H_2 = \sigma H_1\sigma^{-1} \).

(That's why we use the same words for "conjugate subgroups" and "conjugate subfields".)

Conversely, if \(\sigma H_1\sigma^{-1} = H_2 \)

then if \(\alpha \in M_1 \), then \(\sigma(\alpha) \) stabilized by \(H_2 \):

iff \(\tau \in H_2 \), \(\sigma^{-1}\tau \sigma \in H_1 \), \((\sigma^{-1}\tau)(\alpha) = \alpha \).
So $\sigma(\sigma(\alpha)) = \sigma(\alpha)$.

So $\sigma(M_1) \subseteq M_2$.

Symmetrically, $H_1 = \sigma^{-1} H_2 \sigma = \sigma(M_2) \subseteq M_1$.

So f, σ^{-1} are an isom of M_1, M_2.

Difficult part: if $M_1/k, M_2/k$ isom as abstract extensions can extend isom to L.

Method 1: L is the splitting field of some $f \in K[x]$. Then L is the splitting field of f over both M_1 and M_2. But M_1, M_2 isomorphic, so by uniqueness of splitting fields have isom $L \rightarrow L$ respecting isom $M_1 \rightarrow M_2$.

Method 2: Since L/k is Galois, it's separable and so is M_1/k. By the primitive element theorem, have $g \in M_1$ s.t. $M_1 = k(\Theta)$.

Let $f: M_1 \rightarrow M_2$ be the K-isom. Then $M_2 = K(f(\Theta))$.
Let f be the min poly of θ over K. Then $\sigma(f(\theta)) = f(\sigma(\theta))$, i.e. $\theta, \sigma(\theta)$ are roots of f in L.

By the transitivity of the G-action, have $\sigma \in G$ s.t. $\sigma(\theta) = \rho(\theta)$.

Then $\sigma(M_1) = \sigma(K(\theta)) = K(\sigma(\theta)) = K(\rho(\theta)) = K(f(\theta))

So σ_{M_1} : $M_1 \to M_2$ is an isom.

(in fact $\sigma_{M_1} = \rho$)

σ_{M_1}

$\mathbb{V} = C_2 \times C_2 \cong (\mathbb{F}_2^2, +)$

(a) Suppose $\text{Gal}(L/K) \cong V$.

Subgrp lattice of V:

```
  \text{span } \{ (1,0) \}
  \text{span } \{ (1,0), (0,1) \}
  \text{span } \{ (1,0), (0,1), (1,1) \}
```

$\text{span } \{ (1,0), (0,1), (1,1) \}$
3) Have 3 intermediate fields \(K = \mathbb{Q}, \mathbb{Q}, \mathbb{Q, Q, Q} \cdot L \).

As quadratic extensions of \(K, \text{char}(K) \neq 2 \), have \(\alpha_1, \alpha_2 \in K \) s.t.

\[M_1 = K(\sqrt{\alpha_1}) \]

\(M_1 \) distinct, \(\alpha_1 \) distinct in \(K^2/(K^2)^2 \). \(\text{check!} \)

Consider \(K(\sqrt{\alpha_1}, \sqrt{\alpha_2}) \) this contains \(M_1 \) but isn't \(M_1 \). (\(\alpha_2 \) not a square in \(M_1 \) since \(\alpha_2 \) not a square in \(K \), not in \(\alpha_1(\sqrt{\alpha_1})^2 \))

So \(K(\sqrt{\alpha_1}, \sqrt{\alpha_2}) = L \).

(also \(M_2 = K(\sqrt{\alpha_1 \alpha_2}) \) - check!)

ep. \(\{\sqrt{3}, \sqrt{3}, \sqrt{5}\}, \{\sqrt{3}, \sqrt{5}\} \)

Converse: Suppose \(\alpha_1, \alpha_2 \) belong to different non-trivial classes in \(K^2/(K^2)^2 \).

Let \(L = K(\sqrt{\alpha_1}, \sqrt{\alpha_2}) \).

(1) \(L \) is normal (splitting field of \((t^2 - \alpha_1)(t^2 - \alpha_2) \))

(2) \(L \) is separable (\(\text{char} K = \mathbb{Z} \leq \mathbb{Z} \)).

Know \([L:K] = [L:K(\sqrt{\alpha_1})] [K(\sqrt{\alpha_1}):K] = 2 \cdot 2 = 4 \).
\(L \cong K(\sqrt{a_1}) \) since \(a_2 \) not square in \(K(\sqrt{a_1}) \).

Let \(G = \text{Gal}(L/K) \) act on \(\pm \sqrt{a_1}, \pm \sqrt{a_2} \).

If \(\sigma \in G \) then \(\sigma(\sqrt{a_1}) \in \{ \pm \sqrt{a_1} \} \)
\(\sigma(\sqrt{a_2}) \in \{ \pm \sqrt{a_2} \} \)

This is a map \(G \to \mathbb{Z}/2 \times \mathbb{Z}/2 \)
\(G' \times C_2 \)

Map is a 3d hom:

Map \(G \to \text{Gal}(M_1/K) \times \text{Gal}(M_2/K) \)

By restriction, \(M_i \) quadratic = normal

Map from \(G \) to \(V = C_2 \times C_2 \).

Injective: if \(\sigma \in G \) maps to \((id, id)\) it fixes both \(\sqrt{a_1}, \sqrt{a_2} \), i.e. \(L \) fixed.

\(|G| = [L : K] = 4 \times 2 \times 2 \) so map is an isom.

Idea: let \(G \) act on conjugates of generators \(a_1, a_2 \), embed \(G \) in a set of groups.
\(\mathbb{Q}(\sqrt{2}, \sqrt{3})\)

(a) \(\alpha^2 = (2 + \sqrt{2})(3 + \sqrt{3}) = 6 + 3\sqrt{2} + 2\sqrt{3} + \sqrt{6}\)

but this element is not in \(\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3})\), \(\mathbb{Q}(\sqrt{6})\).

So \(\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, \sqrt{3})\)

but \(6 + 3\sqrt{2} + 2\sqrt{3} + \sqrt{6}\) is not a square in this field, so
\[
[\mathbb{Q}(\alpha) : \mathbb{Q}(\sqrt{2}, \sqrt{3})] = 2
\]
So \([\mathbb{Q}(\alpha) : \mathbb{Q}] = 8\).

Galois conjugates of \(\alpha\):
\[\pm\sqrt{(2 + \sqrt{2})(2 + \sqrt{3})}\]

total of 8 element (if all distinct)

if all contained in \(\mathbb{Q}(\alpha)\) then \(\mathbb{Q}(\alpha)\)
splitting field of the min poly of \(\alpha\)
Always have negatives.
Start with \(\sqrt{(2-\sqrt{2})(3+\sqrt{2})} = \alpha \sqrt{\frac{2-\sqrt{2}}{2+\sqrt{2}}} \)
how did we \(\text{change} \ \alpha \text{ to set here} \).
\[\alpha \sqrt{\frac{(2-\sqrt{2})(2+\sqrt{2})}{(2+\sqrt{2})^2}} \]

\[= \alpha \cdot \frac{\sqrt{2}}{2+\sqrt{2}} \in \mathbb{Q}(\alpha) \]

\(\text{Numerator} \in \mathbb{Q} \)
\(\text{Denominator a square} \) \(\forall \beta \in \mathbb{Q}(\alpha) \)

Similarly \(\sqrt{3-\sqrt{2}} \):
\[\sqrt{\frac{3-\sqrt{2}}{3+\sqrt{2}}} = \sqrt{\frac{(3-\sqrt{2})(3+\sqrt{2})}{(3+\sqrt{2})^2}} = \sqrt{\frac{9-2}{(3+\sqrt{2})^2}} \]
\[= \frac{\sqrt{6}}{3+\sqrt{2}} \in \mathbb{Q}(\alpha^2) \]

\(\mathbb{Q}(\alpha) \) contains \(\pm \alpha, \pm \alpha \cdot 2+\sqrt{2}, \pm \alpha \cdot 3+\sqrt{2} \),
\[\pm \alpha \cdot \frac{2+\sqrt{2}}{(2+\sqrt{2})(3+\sqrt{2})} \]

\(\text{i.e. the conjugates of } \alpha \)
\(\text{(can see all distinct; multiply by elements } \pm 1 \text{.)} \)

(b) Compute Galois gp, have three obvious subfields \(\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{6}) \)
\(M_2, M_3, M_6 \)
so three obvious subgps \(H_i = \text{Gal}(\Omega(3)/M_i) \)

order 4. Show:

\[
\begin{align*}
H_1 : & <i> \\
H_2 : & <j> \quad \text{s.t. } ij = k \\
H_3 : & <k>
\end{align*}
\]

one \(\Omega(3) \) conjugate an \(\pm \alpha, \pm \frac{\sqrt{6}}{3 + \sqrt{3}} \)

Can \(\sigma \in H_2 \) map \(\alpha \to -\alpha \), fix \(\alpha \frac{\sqrt{6}}{3 + \sqrt{3}} \)?

This would mean \(\sigma \left(\frac{\sqrt{6}}{3 + \sqrt{3}} \right) = -\frac{\sqrt{6}}{3 + \sqrt{3}} \)

but Galois orbit of \(\frac{\sqrt{6}}{3 + \sqrt{3}} \) is \(\frac{\pm \sqrt{6}}{3 + \sqrt{3}} \)

To get to \(-\frac{\sqrt{6}}{3 + \sqrt{3}} \) need to fix \(\sqrt{6} \)

But this can't happen if \(\sigma \) fixes \(\Omega(3) \)

So \(H_2 : \Omega(3) = \Omega(12, 3) \)

\[
\begin{align*}
\sigma(\sqrt{2}) & \mapsto \sqrt{2} \\
\sigma(\sqrt{6}) & \mapsto \sqrt{6}
\end{align*}
\]

\(\sigma \)

(ie. \(H_2 \) has unique element of order 2, so \(H_2 \cong \text{C}_4 \))

Generator has \(\sigma(\alpha) = \pm \frac{\sqrt{6}}{3 + \sqrt{3}} \).
cycle 1's

To find a group study subgys to get subgys find sub fields \(\mathbb{A} \),
give access to subgys \(H = \text{Gal}(L/K) \)
& to home \(G \to \mathbb{A}/H = \text{Gal}(L/K) \)
if \(N \) is normal \((K) \)

Fund thm of Algebra

\(\text{Calc b): if } f \in \mathbb{R}[x], \text{ has odd degree, then } f \text{ has a root.} \)

\(\Rightarrow \mathbb{R} \text{ has no extensions of odd degrees } > 1. \)

(If \(K/\mathbb{R} \) has odd degree \(n, \alpha \in K \), min poly \(f \) of \(\alpha \) has degree dividing \(n \), \(b \) is irreducible, so \(f \) has deg \(b, \alpha \in \mathbb{R} \).)
Let K be a finite extension of \mathbb{R}
Let N/\mathbb{R} be a normal closure, a
finite Galois extension, say $G = \text{Gal}(N/K)$
Let $P_2 \subseteq G$ be a 2-Sylow subgroup.
Let $L = \text{Fix}(P_2)$. Then $[L:R] = [G:P_2]$ is odd, so $L = \mathbb{R}$, by Galois Correspondence $P_2 = G$, so $[N:R]$ is a power of 2.

Claim: If $|G| = 2^m$ then $[N:R]$ is m successive quadratic extensions of \mathbb{R}.
For p-ary have subgroups of any order dividing their order.

But C_2 is unique quadratic extension of \mathbb{R}

([\mathbb{R}^x/(\mathbb{R}^x)^2] = C_2)$

and C_2 has no quadratic extensions

([C^x/(C^x)^2] = 2^2)$

So $N = \mathbb{R}$ or $N = C$.
So only alg. extensions of \mathbb{R} are \mathbb{R}, \mathbb{C}.

If we allow non-commutative fields (division algebras),

then (Hurwitz) only real division algebras

over \mathbb{R} are $\mathbb{R}, \mathbb{C}, H = \text{Span}_\mathbb{R} \{1, i, j, k\}$

$$= \mathbb{R}[\mathbb{O}_8]/(i^2 = j^2 = k^2 = -1, ij, \text{etc.})$$