(a) Let \(K \) be a field of char \(p \).

Clearly \((xy)^p = x^py^p \) for any \(x, y \in K \).

Hence, \(\sum_{k+l=p} \frac{p!}{k!l!} x^k y^l = x^p + x^p = x^p + \sum_{k+l=p} \frac{p!}{k!l!} x^k y^l \).

We know \(\frac{p!}{l!} \in \mathbb{Z} \), but since \(k, l < p \), we can interpret this as \(\ell \cdot l! \) where \(p, p-1, \ell \) are prime fields (all integers between 1 and \(p-1 \) are invertible in \(\mathbb{Z}/p\mathbb{Z} \)). So \(\frac{p!}{l!} = 0 \) in \(\mathbb{Z}/p\mathbb{Z} \) and

\[(x+y)^p = x^p + y^p.
\]

In \(\mathbb{Z}/p\mathbb{Z} \), have \(1^p = 1 \), so by linearity \(\left(\begin{array}{cccc} 1 & \ldots & 1 \end{array} \right)^p = 1^p + \ldots + 1^p \).

Cor: \(0^p = 0 \), and if \(x \in (\mathbb{Z}/p\mathbb{Z})^* \) then \(x^p = 1 \) (Lagrange’s thm).

So \(x^p = x \).

Remark: In \(\mathbb{F}_p(t) \) image of Frobenius is \(\mathbb{F}_p(t) \).

\[(a_0 + a_1 t + \ldots + a_p t^p)^p = a_0^p + a_1^p t^p + \ldots + a_p^p t^{p^p} \]

(b) \(x^{p+1} = (x^p)^p \), i.e. the map \(x \mapsto x^p \) is \(\mathbb{F}_p \) linear.

\[\xi(x) = x^p \]

\(\xi \) is a composition and power.

(c) By the pigeonhole principle, \(\xi \) is surjective if \(K \) is finite.

(d) Let \(K/F_p \) be algebraic, let \(\alpha \in K \). Then \(\alpha \) is algebraic over \(F_p \), so \([F_p(\alpha) : F_p] < \infty \) so \(F_p(\alpha) \) is a finite field.
(it has \(p^{[F_p(a) : F_p]} \) elements). Now \(F_p(a) \) is the Frobenius map of \(F_p(a) \), by part (c) that is surjective, so there is \(\beta \in F_p(a) \) s.t. \(p^\beta = a \). Then \(\lambda \in \text{Image of } F_p \).

Ideas: dim\(F_p \) may be infinite, but any particular element lies in a finite-dimensional piece of \(K \).

(2) \(\mathbb{Z}/(\mathbb{Z}/n\mathbb{Z})^+ \) the elements of order dividing \(d \) of \((\mathbb{Z}/n) \) are those \(x \) s.t. \(d \cdot x \equiv 0 \pmod{n} \), i.e. the multiples of \(\frac{n}{d} \).

So \(\mathbb{Z}/(\mathbb{Z}/n\mathbb{Z})^+ \) has exactly \(d \) elements of order dividing \(d \) (thought: use the conclusion; check what a cyclic \(G \) is like).

So conditions for any \(d \mid n \), \(G \) has at most as many elements of order dividing \(d \) as \(C_d \).

Prove claim (c) by induction. If \(n=1 \), nothing to prove.

Suppose for any \(m \mid n \), if \(G \) has order \(m \), at most \(d \) elements of order \(d \) for \(d \mid m \) then \(G \triangleleft C_m \).

Now let \(d \mid n \), ask: how many elements of order \(d \) does \(G \) have? Suppose this is positive, let \(x \) be such an element. Then \(\langle x \rangle \leq G \) is isomorphic to \(C_d \).

So has \(d \) elements of order dividing \(d \) so it has all \(d \) elements of order \(1d \) in \(G \). So all elements of order exactly \(d \) are in \(\langle x \rangle \), so \(G \) has exactly as many such elements as \(C_d \) and \(C_n \).
Conclusion: for any abelian G has no elements of order 1, or exactly as many as C_n. But every element of G has order dividing $n = \#G = \#C_n$, so G has as many elements of order as C_n. Apply to $d = n$ to get $G \subset C_n$

$$n = \sum_{d \mid n} \#C_d \leq \sum_{d \mid n} \#G_d = n$$

term-by-term

Conclude F is a field, $G \subset F^*$ is finite, elements of G of order d satisfy $x^d = 1$, and $x^d - 1 \in \mathbb{F}[x]$ has at most d roots. \(\Rightarrow\) G is cyclic.

Example: $G \subset \mathbb{C}^*$ is finite. The every $z \in G$ has $|z| = 1$.

Otherwise z has infinite order since $|z^n| \to \infty$ as $n \to \infty$.

Also, any $z \in \mathbb{C} \cdot 2\pi i$. (if $z^d = 1$, $z = \frac{2\pi i}{d}$.

Taking logarithms, $G \subset \mathbb{Q}/\mathbb{Z}$. Note: $\frac{a}{d}$ with $(a,d) = 1$ generates $\frac{1}{d} \mathbb{Z}/d\mathbb{Z}$ in \mathbb{Q}/\mathbb{Z} also if $a \in \mathbb{Z}$, $\frac{1}{d} \mathbb{Z}/d\mathbb{Z}$

(3) Consider $x^2 - x \in \mathbb{F}_p[x]$, $g = p^e$.

(a) $\partial(x^q - x)$: $q \cdot x^{q-1} - 1 = -1$ so no root of $x^q - x$ is a root of $\partial(x^q - x)$ so it’s separable.

(i.e. in the splitting field, $x^q - x$ has q distinct roots)

(b) Let F be a field with 9 elements.
Then F has char p, $F^* \cong \mathbb{Z}/(p-1)$, so every non-zero $\alpha \in F$ has $\alpha^{q-1} = 1$, so $\alpha^2 = \alpha$.

- Every $\alpha \in F$ is a root of $x^q - x$.

So F consists of the roots of $x^q - x$, and in particular is generated by them.

(c) Since splitting fields are unique up to isomorphism, fields with q elements are unique up to $\text{GF}(q)$-isomorphism.

If F_q exists, it's the splitting field of $x^q - x$. Maybe: (1) the splitting field has fewer than q elements? [Ruled out by separability of $x^q - x$]

(2) The splitting field has more than q elements?

Let F be the splitting field of $x^q - x$ over $\text{GF}(p)$.

Then map $\phi(x) \mapsto x^q$ is an automorphism of F (1)(c).

The set $K = \{ x \in F \mid \phi(x) = x \}$ is a subfield containing

the roots of $x^q - x$: closed under $+$, \cdot, since ϕ is

a monomorphism (Corollary).

\[\phi(x + \beta \cdot \gamma) = \phi(x) + \phi(\beta) \phi(\gamma) = x + \phi(\gamma) \]

if $x, \beta, \gamma \in K$, if ϕ then $\phi(\beta) \phi(\gamma) = \phi(1) = 1$

\[\phi(\beta \cdot \gamma) = \phi(\beta) \cdot \phi(\gamma) \]

$\phi(\beta^{-1}) = \beta^{-q}$.

So $x^q - x$ splits in K, and hence $K = F$.

$\Rightarrow F$ consists exactly of the q distinct roots of $x^q - x$, $\text{GF}(q)$.
5. If K has order q, K is the splitting field of $x^q - x$ over F_p, hence over F_q, so K/F_q is normal.
Every $\alpha \in K$ is a root of the separable polynomial $x^q - x$.

6. (a) α is algebraic over K, then finitely many fields between K, $K(\alpha)$.
Let $K \subseteq M \subseteq K(\alpha)$ be a subfield, let $m_\alpha \in M[x]$ be the minimal polynomial of α.
Think of m_α as a poly. in $K(\alpha)[x]$.
Certainly, $M = K(\text{coefficients of } m_\alpha) \supseteq K$.
What is m_α? It must be a divisor of m_α.
Because $m_\alpha \in M[x]$. But m_α is irreducible in $M[x]$.
So also in $M[x]$.

Idea: If f irreducible in $K[x]$ it's irreducible over any subfield (containing the coeffs).

So $m_\alpha = m_\alpha$.

Reflection: if map $M \to m_\alpha$ fails to be injective then have $\tilde{M} \subseteq M$ with $m_\tilde{M} = m_\alpha$.

But: $[K(\alpha) : M] = \deg m_\alpha = \deg m_\tilde{M} = [K(\alpha) : \tilde{M}]$.
So $[M : \tilde{M}] = 1$, and $M = \tilde{M}$.

(if α transcendental over K, $K(\alpha(t)) \subsetneq K(t)$ all distinct)
If \(L \neq \mathbf{K}(\alpha) \) add \(\alpha_2, \alpha_3, \ldots \), if can't stop get any more subfields. Total deg \(L:K \) finite by mul in tower.

(3) By induction enough to show \(K(\alpha, \beta) = K(\beta) \)

Consider the elements \(\alpha + \lambda \beta, \alpha \in K \)

no two of them belong to same subfield.

\(\sqrt{2} + i \sqrt{3} \)

\(n \quad \text{proper} \)

If \(\alpha + \lambda \beta \) and \(\alpha + \mu \beta \) \(\in M \)

then \((\alpha - \mu) \beta \in M \Rightarrow \beta \in M \).

then \(\alpha \in M \).

\(\Rightarrow \) at most finitely many \(\alpha \in K \) if \(K(\alpha, \lambda \beta) \neq K(\beta) \)

\(\Rightarrow K \) finite) for almost all \(\alpha \in K \), \(K(\alpha + \lambda \beta) = K(\beta) \).