Math 501: Problem Session 2

Clear that \((x-y)/(\sum_{i=2}^k x_i y_i^{k-i}) \equiv x^{k+1} - y^{k+1} \text{ in } \mathbb{Z}[x,y].\)

Idea: "universal property": for any ring \(R\), any \(a, b \in R\) have a unique ring hom \(\phi: \mathbb{Z}[x,y] \to R\) s.t. \(\phi(x), \phi(y) = a, b\) \(\Rightarrow\) an identity in \(\mathbb{Z}[x,y]\) is an identity in any ring.

Here, in any ring \(S,\ x-a \mid x^k - a^k \text{ in } R = S[x].\)

(In general, \(x_1, \ldots, x_r\) in \(\mathbb{Z}[x_1, \ldots, x_r]\) are "r generic elements"

for any ring)

By induction, if \(R(x) = (x-a_0) \cdots (x-a_r)\)
\(P,Q \in R[x],\ a_1, \ldots, a_r \in R,\ \text{and } P(a_{k+1}) = 0 \text{ but } a_{k+1} \neq a_k \text{ for } (i \leq k)\)
then \(Q(a_{k+1}) = 0 \text{ so } Q = (x-a_{k+1})^T, T \in R[x].\)
and \(P = (x-a_1) \cdots (x-a_{k+1})^T\)
if \(R\) is an integral domain

But if \(ab = 0\) in \(R,\) but \(a, b \neq 0\) then \(P(x) = ax\) has genus \(b > 0,\) but \((x-a) (x-b) \neq P\) (any multiple of \(x(x-1)\)
has degree \(\geq 2).\)

Rational root test: Suppose \(x = \alpha\) is a root of \(f \in \mathbb{Z}[x]\)
write: \(f = \sum_{k=0}^n a_k x^k.\) Multiply by \(\alpha^k,\) plug in \(\alpha.\) Get:
\[\sum_{k=0}^{n} \alpha_k \beta^{n-k} = 0 \]

(5) Reduce mod \(b \), get \(\alpha_n \cdot \beta^0 = 0 \). \(\beta \) is invertible \(\Rightarrow \) \(\alpha_n = 0 \). \(\Rightarrow \) \(b | \alpha_n \).

Reduce mod \(a \), get \(\alpha_0 \beta^n = 0 \). (a)

If \(a \) is non-zero get \(a | \alpha_0 \). (if \(a = 0 \) get \(\alpha_0 = 0 \))

Points: reduces checking if \(f \) has rational roots to a finite search.

Example: \(\sigma(b) \). If \(t^4 + 1 \) has a rational root then the root is in \(\mathbb{Z} \) (polynomial is monic).

(Def: Call an algebraic number \(\alpha \) an algebraic integer if \(\alpha \) is a root of a monic polynomial \(f \in \mathbb{Z}[x] \).

and \(f(x) = 0 \) for some monic \(f \in \mathbb{Z}[x] \).

and the root divides 1, but \((\pm) t^4 + 1 \neq 0 \)

(or: \(t^4 + 1 = 0 \) for all \(t \in \mathbb{R} \), so no real roots even.)

(in general: If \(f \) can be factored over \(\mathbb{R} \), \(f \) can be factored over any extension ring \(S \).) (If \(f \) can be factored over \(\mathbb{R} \), it's can be factored over quotient rings.)

Consider \(\sigma(a) \), \(\sigma(b) \). Need to factor \(t^4 + 1 \) over \(\mathbb{Q} \), over \(\mathbb{R} \).

Since no roots, any factorization is into quadratic factors. Over any field, we want \(\sigma \) \(\sigma \) if

\[t^4 + 1 = (t^2 + at + b)^2 (t^2 - at + \frac{1}{b}) \]

forced by \(\frac{1}{b} \) \(\sigma \) coeff of \(t^2 \)

forced by constant coeff.
(in principle should have gotten 5 eqns in 6 unknowns, but why can assume monic factors, use constraints set 2 eqns in two unknowns:)

\[\text{coeff of } t^2 : b + \frac{1}{b} - a^2 = 0 \]

\[\text{coeff of } t : \frac{1}{b} - ab = 0 \]

\[a(5 - 1) \]

either \(a = 0 \), \(b + \frac{1}{b} = 0 \), so \(b^2 = -1 \).

(in a field having \(b \) st. \(b^2 = -1 \), \((t^2 + b)(t^2 - b) = t^4 + 1 \).

(doesn't exist in \(\mathbb{R} \), hence in \(\mathbb{Q} \))

so \(a \to \frac{1}{b} = b \), i.e. \(b = \pm 1 \), \(a^2 = \pm 2 \).

in both \(\mathbb{R}, \mathbb{Q} \) can't have \(a^2 = -2 \), so \(a^2 = 2 \).

in \(\mathbb{R} \), have \((t^2 + \sqrt{2} + 1)(t^2 - \sqrt{2} + 1) = t^4 + 1 \).

in \(\mathbb{Q} \), \(t^4 + 1 \) is irreducible.

Different solution: Note that \((t^2 + \sqrt{2} + 1)(t^2 - \sqrt{2} + 1) = t^4 + 1 \).

since \((\sqrt{2})^2 - 4 = -2 < 0\), both are indivisible in \(\mathbb{R}[x], \mathbb{Q}[x] \).

so this is the factorization in \(\mathbb{R}[x] \).

Suppose that \(t^4 + 1 = f \cdot g \) in \(\mathbb{Q}[x] \). Then, by unique factorization in \(\mathbb{R}[x] \), \(f, g \) are products of complementar subsets of the factors over \(\mathbb{R} \).

so here the only possible factorization is the given one, but \(\sqrt{2} \notin \mathbb{Q} \), and \(t^4 + 1 \) is irreducible in \(\mathbb{Q}[x] \).

Example: To factor \(t^2 + 15t^2 + 7 \) mod 3, note that
$t^4 + 15t^3 + 7 \equiv t^4 + 1 \mod 3 \quad (\text{use } (t^4 + 15t^3 + (-1)(7^2 - 5^2 + 1))$ \\
$t^4 + 15t^3 + 7 \equiv t^4 + 2 \mod 5$.

Problem 2: The Vandermonde Determinant.

Philosophy: If we have an identity
$$\det \begin{pmatrix} x_0^n & \cdots & x_0^1 \\ \vdots & \ddots & \vdots \\ x_n^n & \cdots & x_n^1 \end{pmatrix} = \prod_{i<j}(x_i - x_j)$$
in $\mathbb{Z}[x_0, \ldots, x_n]$, we can then evaluate by mapping $x_i \mapsto a_i$, over R, to evaluate
$$\det \begin{pmatrix} a_0^n & \cdots & a_0^1 \\ \vdots & \ddots & \vdots \\ a_n^n & \cdots & a_n^1 \end{pmatrix} \in R,$$ where $a_i \in R$.

We can use special properties of \mathbb{Z}, $\mathbb{Z}[x_0, \ldots, x_n]$ to get something in any ring $\mathbb{Q}(x_0, \ldots, x_n)$.

Vague argument: if $x_i = x_j$ then $V(x_0, \ldots, x_{n-1}) = 0$.

So $x_i - x_j \mid V$ true for all $i < j$, so $\prod_{i<j}(x_i - x_j) \mid V$

total degree of LHS is (n^2) total degree of V is $0 + n + n - 1 = \frac{n^2}{2}$

So ratio is a constant $c \in \mathbb{Z}$.

Make this formal:

1. Consider $V(x_0, \ldots, x_{n-1})$ as a polynomial in x_{n-1}
 with coeffs in $\mathbb{Z}[x_0, \ldots, x_{n-2}]$. Then this poly has deg $n-1$
 in x_{n-1}. It has x_0, \ldots, x_{n-2} as zeroes (the determinant
 $V(x_0, \ldots, x_{n-2}, x_1)$ vanishes if $i \leq n-2$ since it has good roots.)
So by Problem 1(c),
\[V(x_0, \ldots, x_{n-1}) = \prod_{i \neq j} (x_i - x_j)V_{n-2}(x_0, \ldots, x_{n-2}) \]
with \(V_{n-2}(x_0, \ldots, x_{n-2}) \in \mathbb{Z}[x_0, \ldots, x_{n-2}] \) ("polynomial of degree 0 in \(\mathbb{Z}[x_0, \ldots, x_{n-2}] \)).

Some argument shows \(\prod_{i \neq j} (x_i - x_j) \) divides \(V \) for any \(j \).

\(V_{n-2} \) has degree \(n-2 \) in each of \(x_0, \ldots, \) \(x_{n-2} \).

It has the roots \(x_0, \ldots, x_{n-2} \) (co-poly in \(\mathbb{Z}[x_0, \ldots, x_{n-2}] \)[\(x_{n-2} \)])

because plugging \(x_j \) (\(0 \leq j \leq n-2 \)) into \(x_{n-2} \), we get:

\[0 = V(x_0, \ldots, x_{n-2}, x_j, x_{n-2}) = \prod_{i=0}^{n-2} (x_i - x_{n-1}) (x_j - x_{n-1}) \cdot V(x_0, \ldots, x_{n-2}, x_j) \]

so \(V = \prod_{0 \leq i < j \leq n-1} (x_i - x_j) \cdot V_{n-2}(x_0, \ldots, x_{n-2}) \text{ integral domain } \mathbb{Z}[x_0, \ldots, x_{n-1}] \)

Continue by induction.

End: \(V = \prod_{0 \leq i < j \leq n-1} (x_j - x_i) \cdot V_1 \), \(V_1 \in \mathbb{Z} \).

To find \(V_1 \), consider monomial \(\prod x_i^{a_i} \).

To set it, choose \(x_{n-1} \) for each factor \((x_{n-1} - x_i) \)

(there are \(2^n \) choices when applying distributive law to

\(\text{from } x_{n-1} - x_{n-2} \text{ already choose } x_{n-1} \))
Every monomial \(\prod_{i=0}^{n-1} x_i \) occurs in \(\det(\mathbf{A}) \) with coeff 1, \(\text{sgn} (\text{id}) = 1 \).

So \(V_{-1} = 1 \).

\[
\det (A) = \sum (-1)^{\pi} \prod_{i=0}^{n-1} x_i
\]

\(\det (a \ b) = ad - bc \)

\(\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc \)

One mathematical object can have many definitions, constructions. Useful to look at all of them.

Example \(\mathbb{Q}(\sqrt{2}) \):

1. Intersection of all subfields of \(\mathbb{R} \) (or \(\mathbb{C} \)) that contain \(\sqrt{2} \).
2. All elements of \(\mathbb{R} \) of the form \(a + b\sqrt{2} \).
3. Elements of \(\mathbb{Q} \) obtained from \(a + b\sqrt{2} \) by arithmetic operations.

\(\mathbb{R} = (1) \) complete ordered field

(2) order completion of \(\mathbb{Q} \) ("Dedekind cuts")

(3) metric completion of \(\mathbb{Q} \) ("Cauchy sequences")
Aside: determinants

Let V be a n-dim vector field F.

Def: A function $f: V^d \to F$ is

1. k-linear if it's linear in every variable x_i:
 \[f(x_1, x_2, \ldots, x_k) = \alpha f(x_1, \ldots, x_k) + f(x_1, x_2, \ldots) \]

 [eq. x_1 is 3-linear $F^3 \to F$]

2. Alternating if $f(x_1, \ldots, x_k) = 0$ whenever $x_i = x_j$ for some $i \neq j$.

 Exs: if $T \in SL$ is a transposition then
 \[f(x_1, \ldots, x_k) = -f(x_1, \ldots, x_k) \]
 converse also if $1 \neq 1$.

 Ideal: if $f(x, x) = 0$ then $f(x+y, x+y) = f(x, x) + f(y, y) + f(y, y) + f(x, x)$

 If $f(x, x) + f(x, x) = \Delta (1+1) = f(x, y) + f(y, x)$

3. Volume form if it's n-linear & alternating ($n = \dim V$)

Cor of ex: if f is alternating, $0 \in S_n$ then $f(x_1, \ldots, x_k) = \delta_{i}^{(n)} f(x_1, \ldots, x_k)$.

Def: write $V^\wedge n$ for the space of volume forms on V.

Ex: $V^\wedge n$ is a subspace of the space of functions on V.\]
Fix basis $\beta_i; \beta_1, \ldots, \beta_n \in V$.

Prop: The map $V^n \to F$ given by

$$\Phi: \beta_i \mapsto \phi_i$$

is injective.

Proof: Let $\nu_i; \nu_1, \ldots, \nu_n$ be vectors. Need to show: $\phi_i(\nu_1, \ldots, \nu_n)$ determined by ν_i and by $\phi_i(\beta_1, \ldots, \beta_n)$

\Rightarrow have any $\nu_i = \sum_j a_{ij} \beta_j$

\Rightarrow $\phi_i(\nu_1, \ldots, \nu_n) = \phi_i(\sum_j a_{ij} \beta_j, \ldots, \sum_j a_{ij} \beta_j)$

$= \sum_j \sum_{i=1}^n (a_{ij}, a_{ij}, \ldots, a_{ij}) \cdot \phi_i(\beta_j, \ldots, \beta_j)$

Due to linearity,

$$= \sum_{\sigma: \Sigma i = \Sigma j} \prod_{i=1}^n a_{ij} \sigma(i) \cdot \phi_i(\beta_{\sigma(i)}, \ldots, \beta_{\sigma(n)})$$

Note: if σ is not injective then $\phi_i(\beta_{\sigma(i)}, \ldots, \beta_{\sigma(n)}) = 0$

\Rightarrow

$$= \sum_{\sigma: \Sigma i, \sigma(i)} \prod_{i=1}^n a_{ij} \sigma(i) \phi(\beta_{\sigma(i)}, \ldots, \beta_{\sigma(n)}) = \left(\sum_{\sigma: \Sigma i, \sigma(i)} \prod_{i=1}^n a_{ij} \sigma(i) \right) \phi_i(\beta_1, \ldots, \beta_n)$$

Only depends on a_{ij}

$\Rightarrow \phi_i(\nu_1, \ldots, \nu_n)$

$\Rightarrow \dim F(V^n) \leq 1$

Best $\phi(\nu_1, \ldots, \nu_n) = \sum_{i=1}^n a_{ij} \Phi_i(\beta_j)$ if $\nu_i = \sum_j a_{ij} \beta_j$.
is a volume form (cf. from Lin ch 1)
\[\Phi(b_1, \ldots, b_n) = 1 \to \]
so \(\dim F V = 1 \) (Lemma)
Define: let \(\tau : V \to V \) be a linear map
the map \(V \to V \)
\[\varphi \to \varphi \circ \tau \]
is linear, so for scalar \(\alpha \) and \(\beta \)
\[\varphi(Tv_1, \ldots, Tv_n) = (\det \alpha) \cdot \varphi(v_1, \ldots, v_n) \]
for all \(v_1, \ldots, v_n \).
(Check to check: \((\alpha \varphi + \beta \varphi)(Tv_1, \ldots, Tv_n) = \]
\[= \alpha \varphi(Tv_1, \ldots, Tv_n) + \beta \varphi(Tv_1, \ldots, Tv_n) \]
and \(\varphi(Tv_1, \ldots, Tv_n) \) is a volume form)

Observe:
\[\varphi(TSv_1, \ldots, TSv_n) = \varphi(S, \ldots, S) \]
\[= \varphi(S, \ldots, S) \cdot \varphi(v_1, \ldots, v_n) \]
\[= (\det S) \cdot (\det T) \cdot (\det S) \]
\[= (\det T) \cdot (\det S) \]
check if \(T \) has matrix \(A = (a_{ij}) \) at basis \(\{e_i\} \)?
then \(\det T = \sum_{i,j,k} (e_i, e_j, e_k) \)
if \(i \neq j \neq k \)

Recall: let \(\varphi \) be \(T \)