1) generators.

Suppose G has no non-trivial proper subgroups.

Suppose $G \neq \mathbb{Z}$, let $g \in G \setminus \{e\}$, then $\langle g \rangle$ is a non-trivial subgroup of G, so $\langle g \rangle = G$, so G is cyclic.

(either \mathbb{Z} or C_n for some n.)

$G \neq \mathbb{Z}$ since $2\mathbb{Z} \subset \mathbb{Z}$ is a . . .

Suppose if $G = C_n$, n composite, then $\langle g \rangle$ is a subgroup of G of order $\nu | a$ for any $\alpha | n$.