Infinite Algebraic Extensions:

Examples: $\mathbb{Q} : \mathbb{Q}, \mathbb{F}_p : \mathbb{F}_p$

Today: review "normal", "separable" extensions, talk about Galois groups.

Prop: Let N/K be an algebraic extension. Then N is normal (over K) if every irreducible $f \in K[x]$ having a root in N splits there.

Proof: Let $a \in K$. Then there exists N/L algebraic s.t. N/K normal, no subextension is normal, and N is unique up to isom.

Pf: Observe: if M/K is any extension, M is a set of all subfield of N normal over K, then N is also normal.
(reason: if \(f \in k[x] \) irreducible, \(\alpha \in \overline{F} \), then \(\alpha \in F \) for any \(F \in \mathcal{F} \), so all roots of \(f \) are in \(F \), so all roots of \(f \) are in \(\bigcap \mathcal{F} \))

So if \(\overline{L} \) is an algebraic closure of \(L \) (also of \(K \))

Let \(N = \bigcap \{ L \mid F \in \mathcal{F}, \overline{F} \text{ normal over } K \} \).

Clear, (1) \(N \) normal over \(K \).

(2) \(N \) minimal \(\mathcal{F} \)-such (contained in every normal field containing \(L \))

Uniqueness: let \(\overline{N}_2 \) be another extension normal over \(K \), \(N_2 \) subfields contain \(L \) normal over \(K \)

Let \(\overline{R} \) be an algebraic closure of \(\overline{N} \).

Both \(\overline{R}, \overline{L} \) are algebraic closures of \(L \).

By uniqueness of the alg. closure,
have an L-isom $\varphi : \bar{L} \to R$.

\bar{N} is the smallest subfield of R containing L, normal over L. (if there was a smaller one, we could intersect it with \bar{N})

So $\varphi(N) = \bar{N}$. (N is some thing for \bar{L}, and φ preserves L=K elementwise)

Similar idea: let L/K be algebraic, N/K normal. Then $\text{Aut}_K(N)$ acts transitively on $\text{Hom}_K(L,N)$.

Pf: let \bar{N} be an algebraic closure

let $\varphi_1, \varphi_2 : L \to \bar{N}$ be K-hom.

$\varphi_1 \circ \sigma \varphi_2 : L \to \bar{N}$ where σ is the σ-inclusion.

$\tau : N \to \bar{N}$ inclusion.
Then \(\overline{\sigma_1}, \overline{\sigma_2} \) are algebraic closures of \(\overline{\sigma} \).
By uniqueness have isom \(\sigma \in \text{Aut}(\overline{\sigma}) \) s.t.
\[\overline{\sigma_1} = \sigma \circ \overline{\sigma_2}. \]

(1) \(\overline{\sigma_1} \mathcal{F}_K = \overline{\sigma_2} \mathcal{F}_K \) (there are \(K \)-home) so
\[\sigma \in \text{Aut}_K(\overline{\sigma}). \]

(2) \(\overline{\sigma_1} = N \): if \(\alpha \in N \), let \(f = \min_{\alpha \in \mathcal{F}} \# \alpha \overline{\mathcal{F}} \)
over \(K \). Then \(f(\overline{\sigma(\alpha)}) = 0 \) \(\overline{\sigma}(f(\alpha)) = 0 \)
(\(\sigma \) is a \(K \)-aut.), and \(f \) splits in \(\overline{\sigma} N \), so \(\overline{\sigma} \mathcal{F}(N) \).
So \(\overline{\sigma_1} \mathcal{F}_N \in \text{Aut}_K(\overline{\sigma}) \) s.t.
\[\overline{\sigma_1} = \overline{\sigma} \mathcal{F}_N \circ \mathcal{F}_2. \]

Remark Can calculate in \(K \), restrict

to normal extensions, use uniqueness of \(K \)
to set automorphisms.

2) separability:
If \(L/K \) is an algebraic extension then TFAE:
1) \(L/K \) is separable
2) \(L = K(SL) \), \(S \subset L \) is a set of separable elements.
pf: Illustrate the "locally finite" point of view.

1. \(L = K(L) \).
2. \(1 \Rightarrow 2 ; \) let \(\alpha \in L \), then \(\alpha \in K(S) \), so \(\alpha \) is an arithmetic expression involving elements of \(K, S \), so there is a finite subset \(T \subseteq S \) s.t. \(\alpha \in K(T) \).

Then \([K(T) : K] < \infty \), and we have seen this makes \(K(T) : K \) separable (count \(\text{Hom}_K(K(T), K) \)).

So \(\alpha \in K(T) \) \(\Rightarrow \) \(\alpha \) is separable \(\langle K \rangle \).

Recall

Def: \(L/K \) is Galois if it's normal & separable.

Examples: \(\mathbb{Q} : \mathbb{Q} \), \(\mathbb{Q}(\sqrt{p}) : \mathbb{Q} \), \(\mathbb{Q}(\sqrt{m}) : \mathbb{Q} \), \(\mathbb{F}_p : \mathbb{F}_p \).

Why separable/normal: unions of such extensions + locally finite pov.

Ex: \(\mathbb{Q} \rightarrow \mathbb{Q}(\sqrt{p}) \rightarrow \mathbb{Q}(\sqrt{p^2}) \rightarrow \mathbb{Q}(\sqrt{p^3}) \rightarrow ... \)

Let \(\alpha \in \mathbb{Q}(\sqrt{p^3}) \). Want to show \(\alpha \) is separable,
all roots of min poly of $f \in \mathcal{S}(x)$ are there. Well, have some $\alpha \in \mathcal{S}(f, x)$ then $\mathcal{S}(f, \alpha)$: it is separable \textit{if and only if}\[\text{char } \mathcal{S} = 0\]

\Rightarrow all roots of f are in $\mathcal{S}(f, \alpha) \Rightarrow$ in $\mathcal{S}(\mu_{p^n})$.

\underline{Non-example:} \[\overline{\mathbb{F}_p}(t) : \mathbb{F}_p(t)\]
not separable. (e.g. roots of $t^p - t$)
But: \[\{ \overline{\mathbb{F}_p}(t) \text{ sep } \} = \{ \text{ separable } / \mathbb{F}_p(t) \}\]
This is a subfield. (the subfield can, by this set is separable \Rightarrow equal to the set)
Called separable closure of $\overline{\mathbb{F}_p}(t)$.

Must be normal: if $\alpha \in \overline{\mathbb{F}_p}(t)$ is separable, all roots of min poly of α are separable.
(separability is a property of the minimal poly)
(3) Galois theory

If L/K is normal, separable, write $\text{Gal}(L/K) = \text{Aut}_K(L)$

Lemma: Let $\alpha \in L$. Then L is a field $K \subset N \subset L$ s.t. $\alpha \in N$, N/K finite, N/K normal.

Pf: Take normal closure of $K(\alpha)$.

Lemma: Restriction hom $\text{Gal}(L/K) \rightarrow \text{Gal}(N/K)$ is surjective.

Pf: This was the claim before: different maps $N \cong N$ extend to L.

Cf. $\sigma \in \text{Aut}_K(N)$, have $\sigma \in \text{Aut}_K(L)$ st.

\[\sigma = \mathcal{P} \circ \text{id}_N \]\n
(b. \mathcal{P}, id_N are two embeddings $N \subset L$.)

Observe: Suppose that $\mathcal{P}(\alpha) \in \text{Gal}(L/K)$

Then have α s.t. $6(\alpha) \neq 7(\alpha)$,

then images of $\sigma; \mathcal{P}$ in finite quotient are different.
Question: Say \(N/k \) normal \& cN subfield, how can we have two embeddings \(L \) in \(N \)?

Example: \(N = \mathbb{Q} \), \(L = \mathbb{Q}(\sqrt{2}) \), \(\mathbb{Q}(i\sqrt{2}) \).

Have two embeddings of \(L \) in \(N \):

- \(\text{id}_L \) is an embedding.
- Let \(\sigma(a + b\sqrt{2}) = a - b\sqrt{2} \).
- Then \(\sigma : L \to L \) is also \(\sigma : L \to N \).

Similarly, 3 embeddings \(\mathbb{Q}(\sqrt{2}) \to N \):

Maps \(\sigma_j : \mathbb{Q}(\sqrt{2}) \to N \) s.t. \(\sigma_j(\sqrt{2}) = \sqrt{2}, w, w^3 = 1, j \text{ mod } 3 \).

Theorems: the partial maps \(\sigma_j : N \to N \) \(\sigma : L \to N \) extend to automorphisms.
N/K normal $\theta(a, b, 1)$

We look at $\frac{1 + \sqrt{2}}{3 - \sqrt{3}} \in N$

want $G \cap \text{Aut}(N)$ s.t. $\theta(\sqrt{2}) = -\sqrt{2}$

but $\theta(\sqrt{3}) = \sqrt{3}$.

Result above: θ exists.

$\sqrt{\frac{1 + \sqrt{2}}{3 - \sqrt{3}}}$

Conjugate by $\sqrt{\frac{2 - \sqrt{2}}{2 + \sqrt{3}}}$

(take map $\sqrt{2} \to -\sqrt{2}$, extend arbitrarily)

might set $-\sqrt{\frac{2 - \sqrt{2}}{2 + \sqrt{3}}}$