Last time: transcendence basis is a maximal alg. indep. subset of a field.

L/k extension, want $\mathcal{E}\subseteq\text{indep }L/k$.

Write $L = K(\mathcal{E}) > K$ where $K(\mathcal{E})/k$ purely transcendental, $L/K(\mathcal{E})$ algebraic.

Wanted to show $\#\mathcal{E}$ independent of choice of basis. (called this the transcendence degree, wrote $\text{tr.deg}_k(L) = |\mathcal{E}|$.

Key step: exchange lemma: if A, B alg. indep. sets, can move elements from B to A if we remove corresponding elements from A.

Key step for this: if a polynomial $f \in k[t]$ "involves" variable t, then same true of any multiple.

(really had $f \in k[t][x]$)
If we write \(f = \sum a_k x^k \), \(a \in K[\mathbb{T}] \).

We saw: if \(a_0 \) involves \(t \), same tree for \(\text{const coef} \) of any multiple. (\text{const coef} \) of \(f \) has fewer variables than \(f \).

In general, let \(f \) be smallest \(s.t. t \) occurs in \(a_j \), suppose \(f \cdot g \) does not contain \(t \), \(g \in K[\mathbb{T}][x] \).

Then \(g = \sum_{l=0}^{\infty} b_l x^l \), then \(b_0 a_0 = \text{const coef of} \ f g \) does not contain \(t \), so \(b_0 \) does not contain \(t \).

Polynomial: \(f \in K[\mathbb{T}] \) means \(f \) is a finite sum \(f = \sum a_i t_i^{\alpha_i} \) where \(a_i \in K \), \(\alpha_i \in \mathbb{N}_0 \) of finite support.

\[a_2 \cdot (t_1, t_2) + a_3 \cdot t_1 t_2 + \cdots \]

Say \(f \) contains \(t \), if for some \(i \), \(a_i \neq 0 \) and \(\sigma_f(t) > 0 \).
Write \(f \) as a polynomial in \(K[T,t,s][t_i] \) so \(f = \sum_{k \geq 0} a_k t_i^k, \; a_k \in K[T,t,s][t_i] \).

Multiply by some \(g \in K[T] = K[T,t,s][t_i] \) to add (\(K[T,t,s][t_i] \) is an integral domain) so \(fg \) has positive degree in \(t_i \).

dave \(O(T,e) \) want to put \(e+\pi \) in there. Min poly of \(e+\pi \) is \(x-e+\pi \).

(can treat \(e+\pi \) as "variables")

Since no expression in \(e+\pi \) is zero.

want to show \(\{T, T_2, \ldots \} \) are independent.

\[\text{If min poly of } T \text{ over } O(T) \text{ is a multiple of the min poly of } T \text{ over } O(T,e) \]

but then \(e \) would occur in \(h \), contradicting \(h \in O(T, e+\pi) \).
If we want to add \(b \) to \(A \), might remove a \(a_i \) of \(\text{Gal}(A_1, \{a_i\}) \) is not indep, \(b \) depends on \(A_1, \{a_i\} \).

So has min poly \(h \in K[[A_1, \{a_i\}]] [x] \).

Then \(h \) is a multiple of min poly \(f \) of \(b \) over \(K(A) \), \(\exists f \in K(A)[x] \). But \(f \) is a multiple of \(f \) : \(h(b) = 0 \)

So if we choose a \(a_i \) to occur in \(f \), it would occur in \(h \) too: contradiction. (Some a must occur in \(f \) if \(b \) in transcendental over \(K \))

\[\text{Infinite algebraic extensions} \]

For finite extensions we defined:
- \(LK \) be algebraic
- Recall \(LK \) separable of \(K \), min poly of \(\alpha \) has distinct roots in its splitting field,
- \(LK \) normal if \(\text{Ker} \), min poly of \(\alpha \) splits.
Saw if \(L/K \) finite then

(1) \(L/K \) separable \(\Rightarrow \) \(L/K \) separable by separable elements

\(\Leftrightarrow \) \(L \) having \([L : K] \) embeddings into a normal closure.

(2) \(L/K \) normal \(\Rightarrow \) \(L/K \) is a splitting field if normal closures exist.

Next: (1) \(L/K \) separable \(\Rightarrow \) each \(L/K \) separable elements still true for all extensions

(2) normal closures still exist.

(3) if \(N/K \) normal, \(L/K \) algebraic,
then \(\text{Hom}_K (L, N) \) is an orbit of \(\text{Aut}_K (N) \).

Examples of \(\infty \) extensions:

\(\mathbb{Q} : \mathbb{Q} \), \(\mathbb{F}_p : \mathbb{F}_p \)
\[\mathbb{Q}(\sqrt{p}) = \mathbb{Q}(\sqrt{p}, \sqrt{p^3}, \sqrt{p^5}, \ldots) \]
\[\mathbb{Q}(\sqrt[3]{p}) = \mathbb{Q}(\sqrt[3]{p}, \sqrt[3]{p^3}, \ldots) \]
Fact: this is the maximal abelian extension of \(\mathbb{Q} \), i.e.

\[\text{Gal}(\mathbb{Q}(\sqrt[3]{p}) : \mathbb{Q}) = \text{Gal}(\mathbb{Q} : \mathbb{Q}) \]

Difficulty: what do we mean by \(p \)?

Fact: \(\text{Gal}(L/K) \) (if \(L/K \) is Galois) comes with a topology (notion of open & closed subsets) so that action on \(L \) is continuous

\(\Rightarrow \) Stabilizers of subfields are closed.

(Condition \(f(x) = x \) is closed in \(f \).)

Galois correspondence:

\[\{ \text{closed subgroups} \} \]
\[\{ \text{closed subfields} \} \]
\[\subset \]
\[\text{Gal}(L/K) \]
\[\subset \]
\[\text{Gal}(L/K) \]

Example: \(\text{Gal}(F_p^p : F_p) \) contains Frobenius

\[\sigma(x) = x^p. \]

\[\text{Then } <\sigma> = \gamma \text{ is not all the} \]
Galois group. But, it's dense: the closure is the stabilizer of \(F_2 \), i.e. the whole group

\[
\overline{\text{Savry}}: \text{Gal}(\mathbb{Q}(\sqrt{n}), \mathbb{Q}) \rightarrow (\mathbb{Z}/n\mathbb{Z})^{	imes}
\]

\[
\theta(2n), \quad \theta(2n), \quad \theta(2n), \quad \theta(2n)
\]

Let \(G : \text{Gal}(\mathbb{Q}(\mu_n), \mathbb{Q}) \)

If we believe Galois correspondence, have quotient maps \(G \rightarrow \text{Gal}(\mathbb{Q}(\sqrt{n}), \mathbb{Q}) \) for all \(n \).