Math 501: lecture 15

Galois theory

Definition: A normal, separable algebraic extension is called a Galois extension.

We have shown:
1. If L/K is Galois, $\#\Aut_K(L) = n$.
2. If $G \leq \Aut(L)$ finite, then $[L: \text{Fix}(G)] = |G|$.

Example: F field, $L = F(x_1, \ldots, x_n)$ (function field in n variables). Then $S_n \leq \text{GL}(L)$ by permuting the variables. $c(x_1, x_2) = x_2^3 x_1$.

Definition: $K = L^{S_n} = \text{Fix}(S_n)$ is called the field of symmetric rational functions, fraction field of the ring of symmetric polynomials $F[x_1, x_2, \ldots, x_n]^{S_n}$. (More on this in PS6)

Observation: $\prod (x - x_i) = \sum \prod_{i \neq j} x_{i+j} \sum_{\text{sym} \subseteq [n]} \prod_{i \in \text{sym}} x_i \sum_{\text{sym} \subseteq [n]} \prod_{i \in \text{sym}} H_{\text{sym}}(L)$

Symmetric polynomial $\rightarrow S_{n-k}(x_1, \ldots, x_n)$
By previous results, $[K : F] = n!$, $\text{Aut}_K(L) = S_n$.

Corollary: Let G be any finite group. Embed G in some S_n (Cayley's theorem), take $F(x_1, x_2, \ldots, x_n)$ to get an extension with $\text{Aut}_K(L) = G$.

Conj.: Every finite group is $\text{Aut}_K(L)$ for some finite normal extension L/K.

("inverse Galois problem")

(Conjectures due to G. Malle lamenting such extensions)

Technology: $L \xrightarrow{\theta} L' \xrightarrow{\phi} L''$ $\phi \in \text{Hom}_{k}(L, M)$

If $f \in K[x]$, $\alpha \in L$, then $\theta(f(\alpha)) = (\phi(f))(\theta(\alpha)) = f(\theta(\alpha))$

So $f(\alpha) = 0$ iff $\theta(f) = 0$

Corollary: $\text{Aut}_K(L)$-orbit of $\alpha \in L$ satisfies $f(\alpha) = 0$ is contained in $\{ \text{roots of } f \}$, is finite.

(If L/K algebraic, $\text{Aut}_K(L)$ acts with finite orbits)
Add normality: \(L \to N \to M \)

\(L, N \) extensions of \(K \)
\(N/K \) normal, \(M \) extension of \(N \).

Claim: \(\tau(L) \subseteq N \).

Proof: Let \(\alpha \in L \), let \(f \in K[x] \) be the min poly.

Then \(\tau(\alpha) \) is a root of \(f \) in \(N \). By normality, \(f \) splits in \(N \), so all roots of \(f \), including \(\tau(\alpha) \), are in \(N \), so \(\tau(\alpha) \in N \).

Lemma: \(f \in K[x] \) irreducible, \(N/K \) normal. If \(f \) splits in \(N \) then \(\text{Aut}_K(N) \) acts transitively on the roots.

(start with \(\alpha \in N \). Can make two different sets:
\(\text{Aut}_K(N) \cdot \alpha \subseteq \{ \text{roots of min} \} \)

Lemmal: sets are equal)

(explicit symmetry easy to check. "natural" set from pov of \(K \))

("nothing to say about roots of f except that")
(weak version: all extensions gotta be roots of f are isomorphic (to K[x]/f))
(strong: isom extends to map N \to N)

(cf. see them about triangles)

Pf: let \(g \in K[x] \) st. \(N \) is the splitting field of \(g \) over \(K \). Let \(\alpha, \beta \) be roots of \(f \). Then \(N \) is a splitting field of \(g \) over \(K(\alpha), K(\beta) \).

\[
\begin{array}{c}
N \quad N \\
\downarrow \quad \downarrow \\
K(\alpha) \stackrel{?}{\rightarrow} K(\beta)
\end{array}
\]

By thm on uniqueness of splitting field, have a compatible isom. \(N \to N \).

[Ex: same holds if \(NK \) infinite]

Prop: let \(L \subseteq K \) be finite, \(NK \) finite, normal \(\sigma, \tau \in \text{Hom}_K(L, N) \) (saw for each \(\sigma \), have \(\text{aut} \sigma \in \text{Aut}_K(N) \) st. \(\sigma((\sigma(\alpha)) = \sigma(\alpha) \))

Pf: let \(L = K(\alpha) \) this is the lemma
In general, do same: let g_k be st. N is a splitting field of g over K, then N is a splitting field of g over $F(L), E(L)$.

$N \rightarrow \mathbb{P} \rightarrow N$

$\sigma(L) \rightarrow \tau(L)$ compatible with K.

Notes: By induction, extends to all extensions.

Add separability. If L/K is normal + separable call it Galois, call $\text{Gal}(L/K) = \text{Aut}_K(L)$ the Galois group of the extension.

Thm: Let $[L:K] = n$. TFAE:

1. L/K Galois
2. $\text{Aut}_K(L)$ has order n
3. Fixed field of $\text{Aut}_K(L)$ is K

Pf: So w.r.t. if L/K Galois then have n K-maps $L \rightarrow L$. (Target is normal, source separable, home
at least one map). Maps are surjective as injective
\[C(1) \Rightarrow (2) \]
also \((2) \Rightarrow (3) : \text{let } F = \text{Fix}(\text{Aut}_K(L)) \)
Then \([L : F] = \# \text{Aut}_K(L) \)
\[= \sum [F : K] = \frac{[L : K]}{\sum [E : L]} = \frac{\#}{\# \text{Aut}_K(L)} \]
so LHS = 1 \iff RHS = 1.
that \((2) \implies (1) \) is \(H.W. \)

Next time: let \(L/K \) be finite Galois, \(G = \text{Gal}(L/K) \)
there have bijections
\[
\left\{ \text{subfields of } L \right\} \leftrightarrow \left\{ \text{subgrp of } G \right\}
\]
\[
M \mapsto \text{Gal}(L/M)
\]
\[
\text{Fix}(C_H) \leftrightarrow H
\]
\[+ \left[L : \text{Fix}(C_H) \right] = \# H \]
\[\left[\text{Fix}(C_H) : K \right] = \left[G : H \right] \]
(inclusion, reversing)
Fix \((H)/K \) normal if \(H \subseteq G \)
then \(\text{Gal}(Frac(H)/K) \cong G/H \).

Ex: Let \(A, B \subseteq \text{subsets of Hilbert space} (\mathbb{R}^n, \text{Euclidean metric}) \)
suppose \(f: A \to B \) isometry:
\[
 ||f(a) - f(b)|| = ||a - b||
\]
for all \(a, b \in A \).

Then \(f \) extends to an isometry of the whole space.

\[\text{End.} \quad A \quad B \]

False if \(\| (\mathbf{x}) - (\mathbf{w}) \| = \max \{ \|x - x\|, \|y - w\| \} \)

\(N \text{ dig field, normal } K \)
\(L_1, L_2 \text{ subfields isomorphic as } K \text{ extensions.} \)
Let ω be a root of poly $p \in \mathbb{Q}_1[x]$.

$\sigma : \mathbb{Q}_1 \to \mathbb{Q}_2$ isom. Why does $\sigma(p)$ have a root? (in \mathbb{Q}_2)

$p = x^3 + \sqrt{2} x^2 + \left(\frac{5}{2} + \frac{\sqrt{2}}{2}\right)x + \sqrt{2} \cdot 7 = 0$

$\in \mathbb{Q}(\sqrt[4]{2})[x]$.

Suppose $\sqrt[4]{2}$ normal $\mathbb{Q} x^n$, $\sqrt[3]{2} \in \mathbb{Q}$.

does $p' = x^3 + (3\sqrt[3]{2} \omega) x^2 + \left(\frac{5}{2} + \frac{\sqrt[3]{2} \omega^2}{2}\right)x - \sqrt[3]{2} \omega \cdot 7$ have a root? $\in \mathbb{Q}(\sqrt[3]{2} \omega)[x]$.
(roots of $x^3 - 2$ are $\sqrt[3]{2}, \sqrt[3]{2} w, \sqrt[3]{2} w^2$)

Let $p: \mathbb{N} \to \mathbb{N}$ be such $p(\sqrt[3]{2}) = \sqrt[3]{2} w$.

Then $p(p(x)) = p'$, if $p(x) > 0$

then $p(p(x)) = (f(x))(p(x)) = p'(f(x)) = 0$

As long as $\theta(\sqrt[3]{2}) \to \omega(\sqrt[3]{2} w)$

$$\omega = \frac{-1 + \sqrt{3} i}{2} \quad \text{(fact: } \sqrt[3]{2} w \text{ root of } 4)\quad x^3 - 2$$

$$x^2 - 2x - 2$$

$$|\frac{a}{b}| = \frac{1}{b}$$

$$|a| = \frac{1}{p}, \quad 1 < |a| = \frac{1}{p^2}, \quad \text{when } p \neq a, b$$

$$\text{Also, check } 1|x+y| \leq |x| + |y| \quad |xy| \leq 1$$

$$d(x, y) = |x - y| \text{ metric on } \mathbb{Q}$$

Problem: What is the completion.
ODE \quad y' = y \\

Does it have a solution?

L = K(\alpha_1, \ldots, \alpha_r), \quad f_i = \text{min poly of } \alpha_i \\
normal closure of L/K = \text{splitting field of } f_i.