Math 501, Lecture 8.

So far: looked at field extensions \(L/K \):
- classified elements as transcendental: \(K(\alpha) \neq K(\bar{\alpha}) \)
- or algebraic: \(K(\alpha) = K[\bar{\alpha}] \)

The algebraic elements of \(L \) form a subfield.
\(\alpha \) is algebraic if \(\deg \) of min poly is \(\leq N \).
(\(= \) every element of \(K(\bar{\alpha}) \) is algebraic over \(K \) if \(\alpha \) is)

Thus: \([M:K] = [N:L][L:K] \)

\(\left(\frac{M}{L} \right) \) degrees multiply in towers.

Part 3: Galois Theory

Next step: look more carefully at the connection between extensions? \(\alpha \) polynomials which have roots in the extensions?

So far: if \(f \) is irreducible, \(K[\bar{x}]/(f) \) is an extension where \(f \) has a root.

Today: Splitting fields.
Motivation: we want all roots of \(f \), not just one.

Def: Let \(L/K \) be an extension of fields. Say \(f \in K[x] \) splits in \(L \) if there exist \(\alpha_i \in L \) such that
\[
f = a_0 \cdot \prod_{i=1}^d (x - \alpha_i).
\]
("all roots of \(f \) lie in \(L \)"")

Midterm: set at home either 3rd or 4th week of October.

Point 1: inside some "universal domain" (= algebraically closed field)
\(L \) contains all roots of \(f \).

Point 2: "roots of \(f \)" doesn't have an independent meaning.

Def: Say \(E/K \) is a splitting field for \(f \) if \(f \) splits in \(E \) but not in any subextension.

Example: \[
\int \frac{dx}{1+x^2} = \frac{1}{1+x^2} = \frac{1}{(x+i)/(x-i)} = \frac{1}{x+i} - \frac{1}{x+i} \frac{1}{2i}.
\]
\(\mathbb{C} / \mathbb{R} \) is the splitting field.

Thms: (1) For any \(f \in K[x] \), there is a splitting field \(E \) for \(f \), in fact one where \([E : K] \leq (\deg f)! \).

(2) Splitting fields are unique up to isomorphism. "\(\Sigma \in \mathbb{E} \) the splitting field of \(f \)" determines \(\Sigma \).
Proof:

1. Observe: if \(f \) splits in \(L \) (roots \(\{ \alpha_1, \ldots, \alpha_n \} \))
 then \(\Sigma = \mathbb{E}(\alpha_1, \ldots, \alpha_n) \) is a splitting field. \(f \) splits there, and \(\Sigma \) is necessarily contained in every subfield of \(L \) where \(f \) splits.

 So enough to construct an extension, where \(f \) splits.

Now let’s prove the claim by induction on \(\deg f \).

If \(\deg f = 1 \), \(f \) splits in \(K \) (Nothing to do).

Otherwise, let \(g \in K[x] \) be a irreducible factor of \(f \),

Let \(M = K[x]/(g) = K(\alpha) \) where \(\alpha \) is a root of \(g \), hence \(\deg M = \deg g \leq \deg f \), all roots of \(f \) other than \(\alpha \) are roots of \(\frac{f}{x-\alpha} \in M[x] \). By induction, \(\frac{f}{x-\alpha} \) has a splitting field \(\Sigma \) s.t. \([\Sigma : M] \leq (\deg \frac{f}{x-\alpha})! = (\deg f - 1)! \)

Now \(f \) splits in \(\Sigma \) since \(\alpha \in M \subseteq \Sigma \), so we have a splitting field with \([\Sigma : K] = [\Sigma : M][M : K] < (\deg f)! \).

(2) Similar induction.

Claim: for any field \(K \), \(h \in K[x] \) of \(\deg n \), and any two splitting fields \(2 : K \subseteq L \)

\(2' : K \subseteq L' \)

there is an isomorphism of extensions \(\lambda: L \cong K \)

(i.e., \(\lambda \) is an isomorphism of fields and \(\lambda^n = 2' \))

the case \(n = 1 \) of the claim is clear (\(K \) is the only
splitting field, so β, β' are isomorphic and so $L \cong K \cong L'$

Now let $f \in \mathbb{K}[x]$ have degree $n+1$. As before choose
irreducible factor $g \in \mathbb{K}[x]$ of f. Then g has a root
in both L, L', say $\alpha \in L, \alpha' \in L'$ are such roots:

Let $N = K(\alpha) \subset L, M' = K(\alpha') \subset L'$

\[
\begin{array}{c}
L' \\
\downarrow \quad \downarrow \\
L \\
\downarrow \\
M \\
\downarrow \\
K
\end{array}
\]

since both M, M' are isomorphic to $K[\alpha]$ (or $K[\alpha']$), they
are isomorphic: have isomorphism $\mu : M \to M'$ respecting K, mapping
$\alpha \mapsto \alpha'$.

Also, L/M is a splitting field for f_{α}

(f splits in L; if $f \not\in \mathbb{K}$ split in a subextension containing
M, then f would split there since $\alpha \in M$)

But $j_{\alpha}p : M \to L'$ is also a splitting field for f_{α}

(apply same reasoning as $f_{\alpha'}$)

\Rightarrow by induction (deg $\frac{f}{\alpha} = n$), have isomorphism $\lambda : L \to L'$

s.t.

\[
\begin{pmatrix}
L \\
\downarrow \quad \downarrow \\
L' \\
\downarrow \\
M \\
\downarrow \\
M' \\
\downarrow \\
K
\end{pmatrix}
\]

$\Rightarrow \lambda \circ j = j' \circ \mu$

$\Rightarrow \lambda \circ j = j' \circ \mu$

Example: Any quadratic extension (deg $L/K = 2$) is
a splitting field. Let $\alpha \in \mathbb{L}$, $K \subseteq \mathbb{L}$ so $[K(\alpha) : K] \leq 2$ so $[K(\alpha) : K] = 2$. $K(\alpha) = \mathbb{L}$, so min poly of α is quadratic, has one hence both roots in \mathbb{L}

But $\Omega(\sqrt{2})$ is not a splitting field of $x^2 - 2 \in \mathbb{Q}[x]$.

$$\sin \pi = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n+1}$$

Can't create a field of power series convergent in a disc even if f has no poles in disc \mathbb{D} can.

Can do: Look at field of meromorphic function on \mathbb{C} for any $f \in \Omega$ have the "valuation ring" R_f if f doesn't have a pole.

Then (1) for all $f \in \Omega$, at least one of f is in R_f.

(2) have evaluation map $ev : R_f \to \mathbb{C}$

$$\cos \pi = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \quad \text{invertible in } \mathbb{Q}(\pi+\pi)$$

because $\cos 0 \in \mathbb{Q}$

$$\Omega[\pi]/(\cos \pi) \cong \mathbb{R}(\pi)$$

$$\mathbb{Q}[\pi]/(\cos \pi) \cong \mathbb{R}(\pi)$$

$$\frac{f(x)}{(\cos \pi)} \in \mathbb{Q}[\pi]$$

$f(x) = \sum_{n=0}^{\infty} a_n x^n \in \mathbb{Z}$

Suppose $\frac{f}{x}$ not a root then $f(e^x) \in \frac{1}{e^2} \mathbb{Z}$

$|f(e^\frac{x}{2})| \geq \frac{1}{e^2}$
Suppose $f(x) : 0 \rightarrow \mathbb{R}$ and $rac{1}{2} \leq |f^{(n)}(x) - f^{(n)}(y)| = \frac{|x - y|}{n} \cdot f^{(n)}(y)$.

Thus it is fixed when x, y, $|x - y| > \frac{1}{2}$.