Last time: solvability. Today: fields!

II fields

§1. Reminder about ring of polynomials
§2. Field extensions

III §2 Polynomials
Fix a ring R.

Def: A power series over R, in variable x, is a formal expression
\[f = \sum_{n=0}^{\infty} a_n x^n, \quad \text{where} \quad (a_n)_{n=0}^{\infty} \subset R \]

\[g = \sum_{n=0}^{\infty} b_n x^n \]
is another such, so $R[x]$ is the set:

\[
rf \overset{\text{def}}{=} \sum_{n=0}^{\infty} (ra_n)x^n \quad \quad fg \overset{\text{def}}{=} \sum_{n=0}^{\infty} (\sum a_i b_n) x^n \\
f + g \overset{\text{def}}{=} \sum_{n=0}^{\infty} (a_n + b_n) x^n \quad \quad l = 0 \quad m + n = l
\]

Ex: This endows the set $R[[x]]$ of power series with the structure of an R-algebra (\(= \) ring + R-module, "arithmetic works as expected") compatibly.

Def: A polynomial is a power series with finitely many non-zero coefficients. Write $R[x] \subset R[[x]]$ for the set of polynomials.
Ex: \(\mathbb{R}[x] \) is a subalgebra.

Def: The degree \(\deg f \in \mathbb{R}[x] \) is \(\deg f = \max \{ n \mid a_n \neq 0 \} \)

the leading coefficient of \(f \) is \(a_{\deg f} \)

call \(f \) monic if its leading coeff is 1.

Lemma: \(\mathbb{R} \) is an integral domain then

1. \(\deg (fg) = \deg f + \deg g \)
2. \(\deg (f+g) = \max \{ \deg f, \deg g \} \) (\(= \) if \(\deg f = \deg g \))
3. \(\) if \(\deg f, \deg g \leq 0 \) then \(\deg (f+g) = 0. \) \(\mathbb{R}\mathbb{C} \) is an integral domain

4. \(fg = 1 \Rightarrow \deg f = \deg g = 0 \) and \(f, g \in \mathbb{R}^* \)

Not: \(\mathbb{R} \) is a field, \(f, g \in \mathbb{R}[x], f \neq 0, \) then \(\exists! g, r \in \mathbb{R}[x] \) with \(\deg r < \deg f \) st \(g = qf + r. \)

\(\) division with remainder.

Ex: enough that the leading coeff of \(f \) be invertible

\(\Rightarrow \) \(\mathbb{R}[x] \) is a Euclidean domain \(\Rightarrow \) PID \(\Rightarrow \) UFD

An ideal \(I \subset \mathbb{R}[x] \) has the form \(I = (m) \) when \(m \in \mathbb{F} \) is the monic poly of least degree, \(I \) is prime

if \(I \) maximal \(\Rightarrow m \) is irreducible

(int. domain)

Recall: \(\mathbb{R} \) nice, \(\mathbb{R} \) is a field if can write \(f = gh \)

with \(g, h \in \mathbb{R}^* \) i.e. \(g, h \) not assoc. to \(f \) (in form of \(\mathbb{R}\mathbb{C} \))
I is prime if \(\{ f, g \in \mathbb{I} \rightarrow fg \in \mathbb{I} \} \) \(\Rightarrow \mathbb{R}/\mathbb{I} \) is an integral domain \(\Rightarrow \mathbb{R}/\mathbb{I} \) is a field

(no ideals in \(\mathbb{R}/\mathbb{I} \) other than \(\mathbb{I} \))

In a PID prime \(\Rightarrow \) maximal; (converse always true)

prime \(\Rightarrow \) irreducible

if \(f \mid gh \)

the \(f \mid a \) or \(f \mid b \)

if \(f \mid gh \)

the \(f \mid a \) or \(f \mid b \)

if \(f \mid gh \)

when \(g \) or \(h \) is a scalar

A bit of number theory.

Need a supply of irreducible polynomials.

HW: if \(f \in F[x], \deg f \leq 2 \), then \(f \) irreducible has no root in \(F \).

(+ "rational root thin")

Thm: (Gauss's lemma): let \(f \in \mathbb{Z}[x] \) be irreducible. Then \(f \) is irreducible in \(\mathbb{Q}[x] \) as well.

Pf: suppose \(f \) is reducible in \(\mathbb{Z}[x] \), say \(f = gh \) for some \(g, h \in \mathbb{Z}[x], \deg g, h \geq 1 \).

Then there exists \(a \in \mathbb{Z}_2 \), s.t. \(af = gh \) with \(g, h \in \mathbb{Z}[x] \) ("clearing denominators"). Suppose \(af = gh \) and let a minimal \(a \in \mathbb{Z}_2 \), the \(f = gh \), impossible.

Otherwise, there is a prime \(p \) \(\not| \) polynomial.

Reduce everything mod \(p \): write \(\overline{g} \) for \(g \) in \(\mathbb{Z}_p[\mathbb{Z}_2[x]] \) whose coefficients are the reduction mod \(p \) of the coeff. of \(g \).
Then \(\overline{a_f} = \overline{0} \) since \(p|a \)
so \(\overline{g}/\overline{h} = \overline{0} \)
but \(\mathbb{Z}/p\mathbb{Z} \) is a field, so \(\mathbb{Z}/p\mathbb{Z}[x] \) is an int. domain.
So either \(\overline{g} = \overline{0} \), or \(\overline{h} = \overline{0} \). Wlog \(\overline{g} = \overline{0} \), i.e. every coeff \(\overline{a} \) is divisible by \(p \). But then:
\[
\frac{a}{p} \cdot f = \frac{g}{p} \cdot h
\]
with \(\frac{a}{p} \in \mathbb{Z}/p \), \(p|g \), \(\overline{\frac{a}{p}} \notin \mathbb{Z}/p \mathbb{Z}[x] \).
Impossible.

This (Eisenstein's criterion) let \(f \in \mathbb{Z}[x] \), \(f = a_n x^n + \cdots + a_1 x + a_0 \).
Suppose \(p \) prime s.t. \(p \nmid a_n \), \(p \mid a_i \) for \(i < n \).
Then \(f \) is irreducible in \(\mathbb{Z}[x] \).

Proof:
Suppose \(f = gh \) (d.e. \(\deg g, \deg h \) d.e. \(f \)).
Reduce everything mod \(p \), and \(f = \overline{f} \).
Now \(\overline{f} : \overline{a_n} \cdot \overline{x}^n \).
Since \(\mathbb{Z}/p\mathbb{Z}[x] \) is a UFD, must have \(\overline{g} = \overline{r} \cdot \overline{x}^r \), \(\overline{h} = \overline{s} \cdot \overline{x}^s \)
where \(r + s = d \). Therefore \(g = \sum_{k=0}^{r} r_k \cdot x^k \), \(h = \sum_{k=0}^{s} s_k \cdot x^k \).
(d.e. \(\deg g = r \), \(\deg h = s \), and \(\deg g + \deg h = \deg f = d = r + s \))
so \(\deg g = r \), \(\deg h = s \)

where \(p \mid \deg g \), \(p \nmid \deg h \) if \(\deg g = r \).
But if \(f = gh \) then \(a_0 = b_0 c_0 \) \(\implies r, s \geq 1 \) so \(p \nmid \deg g \)

\[p^2 \mid a_0 \]
Example: The \(p \text{-th} \) cyclotomic polynomial is
\[
\Phi_p(x) = \frac{x^p - 1}{x - 1}
\]
(rmk: \(\Phi_p(1) = 0 \) but \(\Phi_p(\zeta) \neq 0 \) for \(\zeta \neq 1 \))
i.e. \(\zeta \) is an element of \(\mathbb{F}_p \) in a field.

Claim: \(\Phi_p(x) \) is irreducible in \(\mathbb{Z}[x] \)

Pf: Map \(\mathbb{Z}[x] \to \mathbb{Z}[y] \) is a ring hom isom (reverse is \(y \mapsto x - 1 \))

So enough to check \(\Phi_p(y + 1) \) is irreduc.

\[
\Phi_p(y + 1) = \frac{\prod (y + 1)^p - y}{(y + 1)^p - 1} = \frac{\prod (y + 1)^p - y}{(y + 1)^p - 1} = \sum_{i=0}^{p-1} (\frac{P_i}{1})y^i + 1
\]

\[
= \sum_{i=0}^{p-1} (\frac{P_i}{1})y^i + y^p + \sum_{i=0}^{p-2} (\frac{P_i}{1})y^i
\]

This is Eisenstein: monic \(\frac{p}{1} \) not \(\text{div} \) by \(p^3 \) (w/o \(p \) in denom)

Fact: if \(f \in \mathbb{Q}[x] \) is irreducible then the roots of \(f \) are distinct.

Roots of unity in \(\mathbb{C} \) are the elements \(\exp \frac{2\pi i}{n} \), \((\phi, n) = 1\)

Def: \(\Phi_n(x) = \prod (x - \exp \frac{2\pi i}{n}) \)

\(a \in \mathbb{Z}/n\mathbb{Z} \)
Thus $\Psi_h(x) \in \mathbb{D}$, indeed.

Better: $\Psi_h(x) = \frac{x^t - 1}{\prod_{\text{all } \ell \in \mathbb{D}} \Psi_h(\ell)}$ - same thin

[if all then $\Psi_h(\ell) | x^d - 1 | x^t - 1$]

Aside

Def: A field F is algebraically closed if every polynomial in $F[x]$ has a root in F.

F.T. of Algebra: \overline{F} is algebraically closed

if F, K contain \overline{F}, are algebraically closed, are uncountable then $F \times K \approx |F| \cdot |K| = |F|^2$

\mathbb{Q}_p is another completion of \mathbb{Q}, so $\overline{\mathbb{Q}_p} = \mathbb{C}$ ($\text{field of } p\text{-adic numbers}$)

To study systems of equations, associate wedge $(\mathbb{C}$, \mathbb{Q})

+ matrices "Frobenius", acts on it t

Eigenvalues of matrix are important:

Fact: Generally, eigenvalues don't depend on t (after ideal) with \mathbb{C}