Lior Silberman's Math 501: Problem Set 10 (due 27/11/2020)

Algebraic closures

Fix a field K.

- 1. (Existence) Let R_d be the set of irreducible monic polynomials $f \in K[x]$ of degree d. For each $f \in R_d$ let $\{t_{f,i}\}_{i=1}^d$ be variables and let $T = \bigcup_{d \ge 2} \{t_{f,i} \mid f \in R_d, 1 \le i \le d\}$. For $f \in R_d$ with $f = \sum_{k=0}^d a_k x^k$ and $1 \le k \le d$ set $p_{f,k} = (-1)^k s_k (t_{f,1}, \ldots, t_{f,d}) a_{d-k}$ where s_k are the elementary symmetric polynomials, and let $I \lhd K[T]$ be the ideal generated by the $p_{f,k}$.
 - (a) Show that I is a proper ideal. Hint: if $1 \in I$ then we'd have $1 = \sum_{m=1}^{M} q_m p_{f_m, j_m}$ for some $q_m \in K[T]$. Exploit the finiteness of this expression.
 - (b) Let $\mathfrak{m} \triangleleft K[T]$ be a maximal ideal containing I (it exists by the arguments of the previous problem set). Show that every $f \in K[x]$ splits in the field $K[T]/\mathfrak{m}$.
 - (c) Show that $K[T]/\mathfrak{m}$ is an algebraic closure of K.Fix a ring R.
- 2. (Uniqueness) Let $K \hookrightarrow \overline{K}$ and $K \hookrightarrow \overline{K'}$ be two algebraic closures of K. Let \mathcal{F} be the set of functions ρ such that the domain of ρ is a subfield M_{ρ} of \overline{K} containing K and such that $\rho: M_{\rho} \to \overline{K'}$ is a K-monomorphism.
 - (a) Show that \mathcal{F} is closed under unions of chains.
 - (b) Show that a maximal element of \mathcal{F} is an isomorphism $\bar{K} \to \bar{K}'$.
- *3. Let L, L' be algebraically closed extensions of K, and suppose that $\operatorname{tr} \operatorname{deg}_K L = \operatorname{tr} \operatorname{deg}_K L'$. Show that $L \simeq L'$.
- *4. Let L be an algebraically closed extension of K, and let $E \subset L$ be a transcendence basis.
 - (a) Let $\sigma \in S_E$ be an arbitrary permutation. Show that σ extends to an K-automorphism of L.
 - (b) Show that the group $\{\rho \in \operatorname{Aut}_K(L) \mid \rho(E) = E\}$ surjects on S_E .

OPT This problem is for those who know some set theory.

- (a) Let K be an infinite field. Show that K and \overline{K} have the same cardinality.
- (b) Suppose that either K or T are infinite. Show that $|K(T)| = \max\{|K|, |T|\}$.
- (c) Show that $\overline{\mathbb{F}_p}$ is countable and that if K, T are finite then K(T) is countable.
- (d) Show that $\operatorname{tr} \operatorname{deg} \mathbb{C} = |\mathbb{C}| = \aleph$.
- (e) Show that $|S_{\aleph}| = \aleph^{\aleph} = 2^{\aleph}$. Conclude that $|\operatorname{Aut}(\mathbb{C})| = |\operatorname{Aut}_{\mathbb{Q}}(\mathbb{C})| = 2^{\aleph}$.

Supplementary problem: semigroup and group rings

Fix a ring R.

- A. (Free *R*-modules). Let *R* be a ring, and let *S* be a set. The set *R^S* = {*f*: *S* → *R*} is naturally an *R*-module. Recall that the support of *f* ∈ *R^S* is the set {*s* ∈ *S* | *f*(*s*) ≠ 0}.
 (a) Show that *R^{⊕S}* = {*f* ∈ *R^S* | supp(*S*) is finite} is a submodule of *R^S*.
 - (b) Identifying $s \in S$ with the indicator function $e_s(t) = \begin{cases} 1 & t = s \\ 0 & t \neq s \end{cases}$ show that S is a generating set of
 - $R^{\oplus S}$, in other words that the smallest *R*-submodule of $R^{\oplus S}$ containing *S* is $R^{\oplus S}$ itself.
 - (c) Show that $R^{\oplus S}$ is free on S: for any R-module M, any function $\phi: S \to M$ extends uniquely to a homomorphism $\phi \in \operatorname{Hom}_R(R^{\oplus S}, M)$. Prince Albert in a can
- B. A semigroup is a pair (S, \cdot) where S is a non-empty set and $\cdot: S \times S \to S$ is an associative operation. Examples include $(\mathbb{Z}_{\geq 0}, +)$ and $(\mathbb{Z}_{\geq 1}, \times)$, and of course any group is a semigroup. DEF Let $R[S] = (R^{\oplus S}, +, \cdot)$ where + is the addition in $R^{\oplus S}$ and for $f, g \in R^{\oplus S}$ we set

$$(f \cdot g)(s) = \sum_{\substack{r,t \in S \\ rt = s}} f(r)g(t)$$

- (a) Show that the sum in the definition of multiplication is, in fact, finite (i.e. has only finitely many non-zero summands).
- (b) Show that R[S] is an *R*-algebra: it is an *R*-module and a ring (possibly non-commutative and without identity) in a compatible fashion. We call R[S] the semigroup ring.
- (c) Show that R[S] is commutative or unital (has an identity element) i S has the same property.
- (d) Show that R[S] has the following universal property: for any *R*-algebra *A*, any multiplicative map $\phi: S \to A$ (f(st) = f(s)f(t)) extends uniquely to an *R*-algebra homomorphism $\phi: R[S] \to A$.
- (e) A representation of S (over R) is an R-module M equipped with an action of S by R-module homomorphisms. Construct an equivalence of categories {representations of S} \leftrightarrow {R[S]-modules}.
- C. (The ring of polynomials and field of rational functions)
 - (a) Let T be a set disjoint from R. Show that $E = \{\alpha \colon T \to \mathbb{Z}_{\geq 0} \mid \# \operatorname{supp}(\alpha) < \infty\}$ (the "exponents") is a commutative semigroup with identity element 0.
 - (b) Identifying $t \in T$ with the corresponding indicator function, so that E is a free commutative unital semigroup: for any commutative semigroup S, any function $\phi: T \to S$ extends uniquely to a multiplicative map $\phi: E \to S$.
 - **DEF** The polynomial ring R[T] is the semigroup ring R[E].
 - (c) Show that R[T] is a free commutative unital *R*-algebra: for any commutative unital *R*-algebra *A*, any function $\phi: T \to A$ extends uniquely to an *R*-algebra homomorphism $\phi: R[T] \to A$. (Hint: combine C(b) and B(d)).
 - (d) Show that $T \mapsto R[T]$ is a functor {Sets} \rightarrow {*R*-algebras} mapping injections to injections.
 - (e) If $S \subset T$ we often identify R[S] with its image in R[T]. Show that

$$R[T] = \bigcup_{\text{finite } S \subset T} R[S].$$

RMK For the categorical meaning of (e) look up "direct limits".

(f) Show that R[T] is an integral domain whenever R is.

- **DEF** When *R* is an integral domain let *k* be its fraction field, and write R(T) or k(T) for the field of fractions of R[T], the field of rational functions.
- D. (Power series make sense too)
 - (a) Call a semigroup S locally finite if for any $s \in S$ the set $\{(r,t) \in S \times S \mid rt = s\}$ is finite. For a locally finite semigroup define a semigroup power series ring R[S] by replacing $R^{\oplus S}$ with R^S in the definition of R[S]. Show that R[S] is indeed a ring.
 - (b) In particular show that E of C(a) is locally finite. We write R[[T]] for the resulting ring of power series.

Supplementary problems: Existence of algebraic closures

The idea of this proof of the existence of algebraic closures is the most direct, but the proof is more complicated to bring about.

- **E.** Let $K \hookrightarrow L$ be an algebraic extension.
 - (a) If K is finite, show that $|L| < \aleph_0$.
 - (b) If K is infinite, show that |L| = |K|.
- F. (Existence of algebraic closures) Let K be a field, X an infinite set containing K with |X| > |K|. Let 0, 1 denote these elements of $K \subset X$. Let

 $\mathcal{G} = \{(L, +, \cdot) \mid K \subset L \subset X, (L, 0, 1, +, \cdot) \text{ is a field with } K \subset L \text{ an algebraic extension} \}.$

Note that we are assuming that restricting $+, \cdot$ to K gives the field operations of K.

- (a) Show that \mathcal{G} is a set. Note that $\{(\varphi, L) \mid L \text{ is a field and } \varphi \colon K \to L \text{ is an algebraic extension}\}$ is not a set.
- (b) Show that every algebraic extension of K is isomorphic to an element of \mathcal{F} .
- (c) Given $(L, +, \cdot)$ and $(L', +', \cdot') \in \mathcal{G}$ say that $(L, +, \cdot) \leq (L', +', \cdot')$ if $L \subseteq L'$, $+ \subseteq +'$, $\cdot \subseteq \cdot'$. Show that this is a transitive relation.
- (d) Let $C \subset G$ be a chain. Find an element $(L, +, \cdot) \in G$ which is an upper bound for the chain (in the sense of part (c))

Hint: morally speaking you need to take the union.

- FACT A more general of Zorn's Lemma shows that \mathcal{F} now has maximal elements with respect to this order.
- (e) Let $\overline{K} \in \mathcal{F}$ be maximal with respect to this order. Show that \overline{K} is an algebraic closure of K.