
Lior Silberman’s Math 501: Problem Set 10 (due 27/11/2020)

Algebraic closures

Fix a field K.

1. (Existence) Let Rd be the set of irreducible monic polynomials f ∈ K[x] of degree d. For each f ∈ Rd let
{tf,i}di=1 be variables and let T =

⋃
d≥2 {tf,i | f ∈ Rd, 1 ≤ i ≤ d}. For f ∈ Rd with f =

∑d
k=0 akx

k and

1 ≤ k ≤ d set pf,k = (−1)ksk (tf,1, . . . , tf,d)− ad−k where sk are the elementary symmetric polynomials,

and let I CK[T ] be the ideal generated by the pf,k.
(a) Show that I is a proper ideal.

Hint: if 1 ∈ I then we’d have 1 =
∑M
m=1 qmpfm,jm for some qm ∈ K[T ]. Exploit the finiteness of

this expression.

(b) Let mCK[T ] be a maximal ideal containing I (it exists by the arguments of the previous problem

set). Show that every f ∈ K[x] splits in the field K[T ]/m.

(c) Show that K[T ]/m is an algebraic closure of K.Fix a ring R.

2. (Uniqueness) Let K ↪→ K̄ and K ↪→ K̄ ′ be two algebraic closures of K. Let F be the set of functions

ρ such that the domain of ρ is a subfield Mρ of K̄ containing K and such that ρ : Mρ → K̄ ′ is a

K-monomorphism.

(a) Show that F is closed under unions of chains.

(b) Show that a maximal element of F is an isomorphism K̄ → K̄ ′.

*3. Let L,L′ be algebraically closed extensions of K, and suppose that tr degK L = tr degK L′. Show that

L ' L′.

*4. Let L be an algebraically closed extension of K, and let E ⊂ L be a transcendence basis.

(a) Let σ ∈ SE be an arbitrary permutation. Show that σ extends to an K-automorphism of L.
(b) Show that the group {ρ ∈ AutK(L) | ρ(E) = E} surjects on SE .

OPT This problem is for those who know some set theory.

(a) Let K be an infinite field. Show that K and K̄ have the same cardinality.

(b) Suppose that either K or T are infinite. Show that |K(T )| = max {|K| , |T |}.
(c) Show that Fp is countable and that if K,T are finite then K(T ) is countable.

(d) Show that tr degC = |C| = ℵ.
(e) Show that |Sℵ| = ℵℵ = 2ℵ. Conclude that |Aut(C)| = |AutQ(C)| = 2ℵ.
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Supplementary problem: semigroup and group rings

Fix a ring R.

A. (Free R-modules). Let R be a ring, and let S be a set. The set RS = {f : S → R} is naturally an

R-module. Recall that the support of f ∈ RS is the set {s ∈ S | f(s) 6= 0}.
(a) Show that R⊕S =

{
f ∈ RS | supp(S) is finite

}
is a submodule of RS .

(b) Identifying s ∈ S with the indicator function es(t) =

{
1 t = s

0 t 6= s
show that S is a generating set of

R⊕S , in other words that the smallest R-submodule of R⊕S containing S is R⊕S itself.

(c) Show that R⊕S is free on S: for any R-module M , any function φ : S → M extends uniquely to a

homomorphism φ ∈ HomR

(
R⊕S ,M

)
.Prince Albert in a can

B. A semigroup is a pair (S, ·) where S is a non-empty set and · : S × S → S is an associative operation.

Examples include (Z≥0,+) and (Z≥1,×), and of course any group is a semigroup.

DEF Let R[S] =
(
R⊕S ,+, ·

)
where + is the addition in R⊕S and for f, g ∈ R⊕S we set

(f · g) (s) =
∑
r,t∈S
rt=s

f(r)g(t) .

(a) Show that the sum in the definition of multiplication is, in fact, finite (i.e. has only finitely many

non-zero summands).

(b) Show that R[S] is an R-algebra: it is an R-module and a ring (possibly non-commutative and without

identity) in a compatible fashion. We call R[S] the semigroup ring.

(c) Show that R[S] is commutative or unital (has an identity element) iff S has the same property.

(d) Show that R[S] has the following universal property: for any R-algebra A, any multiplicative map

φ : S → A (f(st) = f(s)f(t)) extends uniquely to an R-algebra homomorphism φ : R[S]→ A.
(e) A representation of S (over R) is an R-module M equipped with an action of S by R-module

homomorphisms. Construct an equivalence of categories {representations of S} ↔ {R[S]-modules}.
C. (The ring of polynomials and field of rational functions)

(a) Let T be a set disjoint from R. Show that E = {α : T → Z≥0 | # supp(α) <∞} (the “exponents”)

is a commutative semigroup with identity element 0.
(b) Identifying t ∈ T with the corresponding indicator function, so that E is a free commutative uni-

tal semigroup: for any commutative semigroup S, any function φ : T → S extends uniquely to a

multiplicative map φ : E → S.
DEF The polynomial ring R[T ] is the semigroup ring R[E].
(c) Show that R[T ] is a free commutative unital R-algebra: for any commutative unital R-algebra A,

any function φ : T → A extends uniquely to an R-algebra homomorphism φ : R[T ]→ A.
(Hint : combine C(b) and B(d)).

(d) Show that T 7→ R[T ] is a functor {Sets} → {R-algebras} mapping injections to injections.

(e) If S ⊂ T we often identify R[S] with its image in R[T ]. Show that

R[T ] =
⋃

finite S⊂T

R[S] .

RMK For the categorical meaning of (e) look up “direct limits”.

(f) Show that R[T ] is an integral domain whenever R is.

DEF When R is an integral domain let k be its fraction field, and write R(T ) or k(T ) for the field of

fractions of R[T ], the field of rational functions.

D. (Power series make sense too)

(a) Call a semigroup S locally finite if for any s ∈ S the set {(r, t) ∈ S × S | rt = s} is finite. For a

locally finite semigroup define a semigroup power series ring R[[S]] by replacing R⊕S with RS in

the definition of R[S]. Show that R[[S]] is indeed a ring.

(b) In particular show that E of C(a) is locally finite. We write R[[T ]] for the resulting ring of power

series.
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Supplementary problems: Existence of algebraic closures

The idea of this proof of the existence of algebraic closures is the most direct, but the proof is more

complicated to bring about.

E. Let K ↪→ L be an algebraic extension.

(a) If K is finite, show that |L| ≤ ℵ0.

(b) If K is infinite, show that |L| = |K|.

F. (Existence of algebraic closures) Let K be a field, X an infinite set containing K with |X| > |K|. Let

0, 1 denote these elements of K ⊂ X. Let

G = {(L,+, ·) | K ⊂ L ⊂ X, (L, 0, 1,+, ·) is a field with K ⊂ L an algebraic extension} .
Note that we are assuming that restricting +, · to K gives the field operations of K.

(a) Show that G is a set. Note that {(ϕ,L) | L is a field and ϕ : K → L is an algebraic extension} is not
a set.

(b) Show that every algebraic extension of K is isomorphic to an element of F .
(c) Given (L,+, ·) and (L′,+′, ·′) ∈ G say that (L,+, ·) ≤ (L′,+′, ·′) if L ⊆ L′, + ⊆ +′, · ⊆ ·′. Show

that this is a transitive relation.

(d) Let C ⊂ G be a chain. Find an element (L,+, ·) ∈ G which is an upper bound for the chain (in the

sense of part (c))

Hint: morally speaking you need to take the union.

FACT A more general of Zorn’s Lemma shows that F now has maximal elements with respect to this

order.

(e) Let K̄ ∈ F be maximal with respect to this order. Show that K̄ is an algebraic closure of K.
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