Lior Silberman's Math 501: Problem Set 10 (due 27/ 11/ 2020) Algebraic closures

Fix a field K.

1. (Existence) Let R_{d} be the set of irreducible monic polynomials $f \in K[x]$ of degree d. For each $f \in R_{d}$ let $\left\{t_{f, i}\right\}_{i=1}^{d}$ be variables and let $T=\bigcup_{d \geq 2}\left\{t_{f, i} \mid f \in R_{d}, 1 \leq i \leq d\right\}$. For $f \in R_{d}$ with $f=\sum_{k=0}^{d} a_{k} x^{k}$ and $1 \leq k \leq d$ set $p_{f, k}=(-1)^{k} s_{k}\left(t_{f, 1}, \ldots, t_{f, d}\right)-a_{d-k}$ where s_{k} are the elementary symmetric polynomials, and let $I \triangleleft K[T]$ be the ideal generated by the $p_{f, k}$.
(a) Show that I is a proper ideal. Hint: if $1 \in I$ then we'd have $1=\sum_{m=1}^{M} q_{m} p_{f_{m}, j_{m}}$ for some $q_{m} \in K[T]$. Exploit the finiteness of this expression.
(b) Let $\mathfrak{m} \triangleleft K[T]$ be a maximal ideal containing I (it exists by the arguments of the previous problem set). Show that every $f \in K[x]$ splits in the field $K[T] / \mathrm{m}$.
(c) Show that $K[T] / \mathrm{m}$ is an algebraic closure of $K . \mathrm{Fix}$ a ring R.
2. (Uniqueness) Let $K \hookrightarrow \bar{K}$ and $K \hookrightarrow \bar{K}^{\prime}$ be two algebraic closures of K. Let \mathcal{F} be the set of functions ρ such that the domain of ρ is a subfield M_{ρ} of \bar{K} containing K and such that $\rho: M_{\rho} \rightarrow \bar{K}^{\prime}$ is a K-monomorphism.
(a) Show that \mathcal{F} is closed under unions of chains.
(b) Show that a maximal element of \mathcal{F} is an isomorphism $\bar{K} \rightarrow \bar{K}^{\prime}$.
*3. Let L, L^{\prime} be algebraically closed extensions of K, and suppose that $\operatorname{trdeg}{ }_{K} L={\operatorname{tr~} \operatorname{deg}_{K}} L^{\prime}$. Show that $L \simeq L^{\prime}$.
*4. Let L be an algebraically closed extension of K, and let $E \subset L$ be a transcendence basis.
(a) Let $\sigma \in S_{E}$ be an arbitrary permutation. Show that σ extends to an K-automorphism of L.
(b) Show that the group $\left\{\rho \in \operatorname{Aut}_{K}(L) \mid \rho(E)=E\right\}$ surjects on S_{E}.

OPT This problem is for those who know some set theory.
(a) Let K be an infinite field. Show that K and \bar{K} have the same cardinality.
(b) Suppose that either K or T are infinite. Show that $|K(T)|=\max \{|K|,|T|\}$.
(c) Show that $\overline{\mathbb{F}_{p}}$ is countable and that if K, T are finite then $K(T)$ is countable.
(d) Show that trdeg $\mathbb{C}=|\mathbb{C}|=\kappa$.
(e) Show that $\left|S_{\aleph}\right|=\aleph^{\aleph}=2^{\aleph}$. Conclude that $|\operatorname{Aut}(\mathbb{C})|=\left|\operatorname{Aut}_{\mathbb{Q}}(\mathbb{C})\right|=2^{\aleph}$.

Supplementary problem: semigroup and group rings

Fix a ring R.

A. (Free R-modules). Let R be a ring, and let S be a set. The set $R^{S}=\{f: S \rightarrow R\}$ is naturally an R-module. Recall that the support of $f \in R^{S}$ is the set $\{s \in S \mid f(s) \neq 0\}$.
(a) Show that $R^{\oplus S}=\left\{f \in R^{S} \mid \operatorname{supp}(S)\right.$ is finite $\}$ is a submodule of R^{S}.
(b) Identifying $s \in S$ with the indicator function $e_{s}(t)=\left\{\begin{array}{ll}1 & t=s \\ 0 & t \neq s\end{array}\right.$ show that S is a generating set of $R^{\oplus S}$, in other words that the smallest R-submodule of $R^{\oplus S}$ containing S is $R^{\oplus S}$ itself.
(c) Show that $R^{\oplus S}$ is free on S : for any R-module M, any function $\phi: S \rightarrow M$ extends uniquely to a homomorphism $\phi \in \operatorname{Hom}_{R}\left(R^{\oplus S}, M\right)$.P rince Albert in a can
B. A semigroup is a pair (S, \cdot) where S is a non-empty set and $\cdot: S \times S \rightarrow S$ is an associative operation. Examples include ($\mathbb{Z}_{\geq 0},+$) and ($\mathbb{Z}_{\geq 1}, \times$), and of course any group is a semigroup.
DEF Let $R[S]=\left(R^{\oplus S},+, \cdot\right)$ where + is the addition in $R^{\oplus S}$ and for $f, g \in R^{\oplus S}$ we set

$$
(f \cdot g)(s)=\sum_{\substack{r, t \in S \\ r t=s}} f(r) g(t)
$$

(a) Show that the sum in the definition of multiplication is, in fact, finite (i.e. has only finitely many non-zero summands).
(b) Show that $R[S]$ is an R-algebra: it is an R-module and a ring (possibly non-commutative and without identity) in a compatible fashion. We call $R[S]$ the semigroup ring.
(c) Show that $R[S]$ is commutative or unital (has an identity element) iff S has the same property.
(d) Show that $R[S]$ has the following universal property: for any R-algebra A, any multiplicative map $\phi: S \rightarrow A(f(s t)=f(s) f(t))$ extends uniquely to an R-algebra homomorphism $\phi: R[S] \rightarrow A$.
(e) A representation of S (over R) is an R-module M equipped with an action of S by R-module homomorphisms. Construct an equivalence of categories \{representations of $S\} \leftrightarrow\{R[S]$-modules $\}$.
C. (The ring of polynomials and field of rational functions)
(a) Let T be a set disjoint from R. Show that $E=\left\{\alpha: T \rightarrow \mathbb{Z}_{\geq 0} \mid \# \operatorname{supp}(\alpha)<\infty\right\}$ (the "exponents") is a commutative semigroup with identity element 0 .
(b) Identifying $t \in T$ with the corresponding indicator function, so that E is a free commutative unital semigroup: for any commutative semigroup S, any function $\phi: T \rightarrow S$ extends uniquely to a multiplicative map $\phi: E \rightarrow S$.
DEF The polynomial ring $R[T]$ is the semigroup ring $R[E]$.
(c) Show that $R[T]$ is a free commutative unital R-algebra: for any commutative unital R-algebra A, any function $\phi: T \rightarrow A$ extends uniquely to an R-algebra homomorphism $\phi: R[T] \rightarrow A$.
(Hint: combine $C(b)$ and $B(d)$).
(d) Show that $T \mapsto R[T]$ is a functor \{Sets $\} \rightarrow\{R$-algebras $\}$ mapping injections to injections.
(e) If $S \subset T$ we often identify $R[S]$ with its image in $R[T]$. Show that

$$
R[T]=\bigcup_{\text {finite } S \subset T} R[S] .
$$

RMK For the categorical meaning of (e) look up "direct limits".
(f) Show that $R[T]$ is an integral domain whenever R is.

DEF When R is an integral domain let k be its fraction field, and write $R(T)$ or $k(T)$ for the field of fractions of $R[T]$, the field of rational functions.
D. (Power series make sense too)
(a) Call a semigroup S locally finite if for any $s \in S$ the set $\{(r, t) \in S \times S \mid r t=s\}$ is finite. For a locally finite semigroup define a semigroup power series ring $R[[S]]$ by replacing $R^{\oplus S}$ with R^{S} in the definition of $R[S]$. Show that $R[[S]]$ is indeed a ring.
(b) In particular show that E of $\mathrm{C}(\mathrm{a})$ is locally finite. We write $R[[T]]$ for the resulting ring of power series.

Supplementary problems: Existence of algebraic closures

The idea of this proof of the existence of algebraic closures is the most direct, but the proof is more complicated to bring about.
E. Let $K \hookrightarrow L$ be an algebraic extension.
(a) If K is finite, show that $|L| \leq \aleph_{0}$.
(b) If K is infinite, show that $|L|=|K|$.
F. (Existence of algebraic closures) Let K be a field, X an infinite set containing K with $|X|>|K|$. Let 0,1 denote these elements of $K \subset X$. Let

$$
\mathcal{G}=\{(L,+, \cdot) \mid K \subset L \subset X,(L, 0,1,+, \cdot) \text { is a field with } K \subset L \text { an algebraic extension }\} .
$$

Note that we are assuming that restricting + , to K gives the field operations of K.
(a) Show that \mathcal{G} is a set. Note that $\{(\varphi, L) \mid L$ is a field and $\varphi: K \rightarrow L$ is an algebraic extension $\}$ is not a set.
(b) Show that every algebraic extension of K is isomorphic to an element of \mathcal{F}.
(c) Given $(L,+, \cdot)$ and $\left(L^{\prime},+^{\prime},,^{\prime}\right) \in \mathcal{G}$ say that $(L,+, \cdot) \leq\left(L^{\prime},+^{\prime},,^{\prime}\right)$ if $L \subseteq L^{\prime},+\subseteq+^{\prime}, \cdot \subseteq \prime^{\prime}$. Show that this is a transitive relation.
(d) Let $\mathcal{C} \subset \mathcal{G}$ be a chain. Find an element $(L,+, \cdot) \in \mathcal{G}$ which is an upper bound for the chain (in the sense of part (c))
Hint: morally speaking you need to take the union.
FACT A more general of Zorn's Lemma shows that \mathcal{F} now has maximal elements with respect to this order.
(e) Let $\bar{K} \in \mathcal{F}$ be maximal with respect to this order. Show that \bar{K} is an algebraic closure of K.

