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Lior Silberman’s Math 501: Problem Set 10 (due 27/11/2020)

Algebraic closures

Fix a field K.
(Existence) Let R, be the set of irreducible monic polynomials f € K|[z] of degree d. For each f € R, let
{t7.:}L, be variables and let T = o, {tsi | f € Ra,1 <i<d}. For f € Rq with f = >"1_ ayz* and
1<k<dsetps; = (—1)ksyp (tf1,...,t54) —aa—r Where s;; are the elementary symmetric polynomials,
and let I < K[T'] be the ideal generated by the py .
(a) Show that I is a proper ideal.
Hint: if 1 € I then we’'d have 1 = Zf‘f:l qmD s . TOr SOMe ¢, € K[T]. Exploit the finiteness of
this expression.
(b) Let m <« K[T] be a maximal ideal containing I (it exists by the arguments of the previous problem
set). Show that every f € K[x] splits in the field K[T]/m.
(c) Show that K[T]/m is an algebraic closure of K.Fix a ring R.

(Uniqueness) Let K — K and K — K’ be two algebraic closures of K. Let F be the set of functions
p such that the domain of p is a subfield M, of K containing K and such that p: M, — K’ is a
K-monomorphism.

(a) Show that F is closed under unions of chains.

(b) Show that a maximal element of F is an isomorphism K — K.

Let L, L’ be algebraically closed extensions of K, and suppose that trdeg, L = trdeg, L’. Show that
L~1TL'.

Let L be an algebraically closed extension of K, and let £ C L be a transcendence basis.
(a) Let o € Sk be an arbitrary permutation. Show that ¢ extends to an K-automorphism of L.
(b) Show that the group {p € Autx (L) | p(E) = E} surjects on Sg.

OPT This problem is for those who know some set theory.

() Let K be an infinite field. Show that K and K have the same cardinality.
(b) Suppose that either K or T are infinite. Show that |K(T)| = max {|K|, |T|}.
(c) Show that F, is countable and that if K, T are finite then K(T') is countable.
(d) Show that trdegC = |C| = X.

(e) Show that |Sx| = X® = 2%, Conclude that |Aut(C)| = |[Autg(C)| = 2%.
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Supplementary problem: semigroup and group rings
Fix a ring R.

A. (Free R-modules). Let R be a ring, and let S be a set. The set R° = {f: S — R} is naturally an

B.

R-module. Recall that the support of f € R® is the set {s € S | f(s) # 0}.
(a) Show that R®S = {f € R® | supp(S) is finite} is a submodule of R®.
1 = . .
b=s show that S is a generating set of
0 t#s
R®S | in other words that the smallest R-submodule of R®S containing S is R®S itself.

(c) Show that R®% is free on S: for any R-module M, any function ¢: S — M extends uniquely to a
homomorphism ¢ € Homp (R®®, M).Prince Albert in a can

(b) Identifying s € S with the indicator function e4(t) =

A semigroup is a pair (S,-) where S is a non-empty set and -: S x S — S is an associative operation.
Examples include (Z>g,+) and (Z>4, x), and of course any group is a semigroup.
DEF Let R[S] = (R®%,+,-) where + is the addition in R®% and for f,g € R® we set

(f-9)(s)= D flr)g(t).

r,tesS
rt=s

(a) Show that the sum in the definition of multiplication is, in fact, finite (i.e. has only finitely many
non-zero summands).

(b) Show that R[S] is an R-algebra: it is an R-module and a ring (possibly non-commutative and without
identity) in a compatible fashion. We call R[S] the semigroup ring.

(c) Show that R[S] is commutative or unital (has an identity element) i 3 has the same property.

(d) Show that R[S] has the following universal property: for any R-algebra A, any multiplicative map
¢: S — A (f(st) = f(s)f(t)) extends uniquely to an R-algebra homomorphism ¢: R[S] — A.

(e) A representation of S (over R) is an R-module M equipped with an action of S by R-module
homomorphisms. Construct an equivalence of categories {representations of S} < { R[S]-modules}.

(The ring of polynomials and field of rational functions)

(a) Let T be a set disjoint from R. Show that F = {a: T — Z> | #supp(«) < oo} (the “exponents”)
is a commutative semigroup with identity element 0.

(b) Identifying ¢t € T with the corresponding indicator function, so that E is a free commutative uni-
tal semigroup: for any commutative semigroup S, any function ¢: T' — S extends uniquely to a
multiplicative map ¢: £ — S.

DEF The polynomial ring R[T] is the semigroup ring R[E].

(c) Show that R[T] is a free commutative unital R-algebra: for any commutative unital R-algebra A,
any function ¢: T — A extends uniquely to an R-algebra homomorphism ¢: R[T] — A.

(Hint: combine C(b) and B(d)).
(d) Show that T — R[T] is a functor {Sets} — {R-algebras} mapping injections to injections.
(e) If S C T we often identify R[S] with its image in R[T]. Show that

R[T] = JRIS].
finite SCT

RMK For the categorical meaning of (e) look up “direct limits”.

(f) Show that R[T] is an integral domain whenever R is.

DEF When R is an integral domain let & be its fraction field, and write R(T") or k(T) for the field of
fractions of R[T7], the field of rational functions.

(Power series make sense t00)

(a) Call a semigroup S locally finite if for any s € S the set {(r,t) € S x S| rt = s} is finite. For a
locally finite semigroup define a semigroup power series ring R[[S]] by replacing R® with RS in
the definition of R[S]. Show that R[[S]] is indeed a ring.

(b) In particular show that E of C(a) is locally finite. We write R[[T]] for the resulting ring of power
series.
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Supplementary problems: Existence of algebraic closures

The idea of this proof of the existence of algebraic closures is the most direct, but the proof is more
complicated to bring about.

Let K — L be an algebraic extension.
(a) If K is finite, show that |L| < R,.
(b) If K is infinite, show that |L| = |K]|.

(Existence of algebraic closures) Let K be a field, X an infinite set containing K with |X| > |K|. Let
0, 1 denote these elements of K C X. Let

G={(L,+,)|KcLcX,(L0,1,+,-) is a field with K C L an algebraic extension} .
Note that we are assuming that restricting +, - to K gives the field operations of K.

(a) Show that G is a set. Note that {(¢, L) | L is a field and ¢: K — L is an algebraic extension} is not
a set.

(b) Show that every algebraic extension of K is isomorphic to an element of F.

(c) Given (L,+,-) and (L',+',"") € G say that (L,+,-) < (L',+',)ifLC L', + C +/,- C . Show
that this is a transitive relation.

(d) Let C C G be a chain. Find an element (L, +,-) € G which is an upper bound for the chain (in the
sense of part (c))
Hint: morally speaking you need to take the union.

FACT A more general of Zorn’s Lemma shows that F now has maximal elements with respect to this
order.

(e) Let K € F be maximal with respect to this order. Show that K is an algebraic closure of K.
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