Lior Silberman's Math 501: Problem Set 9 (due 20/11/2020) Solubility by radicals

- 1. Solve the equation $t^{6} + 2t^{5} 5t^{4} + 9t^{3} 5t^{2} + 2t + 1 = 0$ by radicals. Hint: Let $u = t + \frac{1}{t}$.
- 2. Let K be a field of characteristic zero and consider the system of equations over the field K(t):

$$\begin{cases} x^2 = y + t \\ y^2 = z + t \\ z^2 = x + t \end{cases}$$

(a) Let (x, y, z) be a solution in a field extension of K(t). Show that x satisfies either $x^2 = x + t$ or a certain sextic equation over K(t).

.

- OPT Use a computer algebra system to verify that the sextic is relatively prime both to $x^2 x t$ and to its own formal derivative.
- (b) Show that the Galois group of the splitting field of the sextic preserves an equivalence relation among its six roots.

Hint: Find an permutation of order 3 acting on the roots. This is visible in the original system.

- (c) Let {α, β, γ} be an equivalence class of roots, and let s(a, b, c) be a symmetric polynomial in three variables. Show that s(α, β, γ) belongs to an extension of K(t) of degree 2 at most. Hint: If s(α, β, γ) is a root of a quadratic, what should the other root be? Show that the coe cients of the putative quadratic are indeed invariant by the Galois group.
- (d) Show that the system of equations can be solved by radicals.Hint: For each equivalence class construct a cubic whose roots are the equivalence class and whose coe cients lie in a radical extension.
- **OPT** Show that knowing [K(t, x + y + z) : K(t)] = 2 where x, y, z are roots of the original system would have been enough.

Zorn's lemma

This is set-theroetic preparation ahead of working with infinite extensions.

The powerset of a set X is the set $\mathcal{P}(X) = \{A \mid A \subset X\}$ of subsets of X. $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$. A chain in $\mathcal{P}(X)$ is a subset $\mathcal{C} \subset \mathcal{P}(X)$ which is totally ordered by inclusion: for any $A, B \in \mathcal{C}$ we either have $A \subset B$ or $B \subset A$ (or both if A = B). If $\mathcal{F} \subset \mathcal{P}(X)$ we call $M \in \mathcal{F}$ maximal if it's maximal for inclusion: there is no $A \in \mathcal{F}$ so that $M \subseteq A$.

THEOREM (Zorn's Lemma; equivalent to the Axiom of Choice). Let X be a set, and let $\mathcal{F} \subset P(X)$ be a non-empty family of subsets of X. Suppose that F is "closed under unions of chains": for any non-empty chain $\mathcal{C} \subset \mathcal{F}$ we have $\bigcup \mathcal{C} \in \mathcal{F}$. Then \mathcal{F} has maximal elements.

- 3. Let *R* be a ring, and let $\mathcal{F} \subset \mathcal{P}(R)$ be the set of proper ideals (together with the empty set).
 - (a) Let $C \subset F$ be a chain of proper ideals and let $a, b \in \bigcup C$. Show that there is $I \in C$ so that $a, b \in I$. (b) Show that $\bigcup C$ is an ideal.
 - (c) Using the fact that an ideal is proper i it does not contain 1_R , show that $\bigcup C$ is a proper ideal.
 - (d) Invoke Zorn's Lemma to show that every ring has maximal ideals.
- 4. Let K be a field, and let V be a K-vectorspace. Let $\mathcal{F} \subset \mathcal{P}(V)$ be the family of linearly independent subsets of V.
 - (a) Let $C \subset F$ be a chain. Show that $\bigcup C$ is linearly independent.
 - (b) Invoke Zorn's Lemma to show that V contains a maximal linearly independent set B.
 - (c) Let $v \in V$. Show that $v \in \text{Span}_K(B)$, in other words that B is a basis (hint: the alternative contradicts the maximality of B).