1. Let ζ be a primitive nth root of unity.
 (a) Show that $\zeta^n - 1 \in \mathbb{Q}[x]$ has n distinct roots.
 (b) Write μ_n for the set of roots of this polynomial. Show that it forms a cyclic group of order n.

DEF μ_n is called the group of roots of unity of order $\mid \text{dividing} \mid n$. A root of unity $\zeta \in \mu_n$ is called primitive if it is a generator, that is if it has order exactly n. We write ζ_n for a primitive root of unity of order n, for example $e^{2\pi i/n} \in \mathbb{C}$ (by problem 6(a) the choice doesn’t matter). For the purpose of the problem set we also write $P_n \subset \mu_n$ for the set of primitive roots of unity of order n. The polynomial $\Phi_n(x) = \prod_{\zeta \in P_n} (x - \zeta)$ is called the nth cyclotomic polynomial. The field $\mathbb{Q}(\zeta_n)$ is called the nth cyclotomic field.

(c) Show that $\prod_{d|n} \Phi_d(x) = x^n - 1$. We’ll later show that this is the factorization of $x^n - 1$ into irreducibles in $\mathbb{Q}[x]$.

2. (Prime power and prime order) Fix an odd prime p and let $r \geq 1$.
 (a) Show that $\Phi_{p^r}(x) = \frac{x^{p^r} - 1 - 1}{x - 1}$ and that this polynomial is irreducible.
 (b) Show that $\text{Gal}(\mathbb{Q}(\zeta_{p^r}) : \mathbb{Q}) \simeq (\mathbb{Z}/p^r\mathbb{Z})^\times$.
 (c) Show that $\text{Gal}(\mathbb{Q}(\zeta_{p^r}) : \mathbb{Q})$ is cyclic.
 (d) Show that $\mathbb{Q}(\zeta_{p^r})$ has a unique subfield K so that $[K : \mathbb{Q}] = 2$.
 (e) Let $G = \text{Gal}(\mathbb{Q}(\zeta_{p^r}) : \mathbb{Q})$. Show that there is a unique non-trivial homomorphism $\chi: G \to \{ \pm 1 \}$.
 (f) Let $g = \sum_{\sigma \in G} \chi(\sigma) \sigma(\zeta_p)$ (the “Gauss sum”). Show that $g \in K$, $g \notin \mathbb{Q}$, but $g^2 \in \mathbb{Q}$.
 (*g) Show that $g^2 = (-1)\frac{1}{p-1} \frac{1}{p}$, giving a different proof that $K = \mathbb{Q}(g)$.

Examples

3. (Quadratic extension) Let $L = K(\sqrt{d})$ be a quadratic extension of characteristic not equal to 2.
 (a) Write down the matrix of multiplication by $\alpha = a + b\sqrt{d} \in L$ in the basis $\{1, \sqrt{d}\}$.
 (b) Find the trace and determinant of this matrix.
 (c) Let σ be the non-trivial element of $\text{Gal}(L/K)$. Show that the answers to (b) agree with $\alpha + \sigma(\alpha)$, $\alpha \sigma(\alpha)$ respectively.
 (RMK Meditate on the case $L = \mathbb{C}$, $K = \mathbb{R}$.)

4. (Cyclotomic extension) Let ζ_p be a primitive root of unity of order p and equip $\mathbb{Q}(\zeta)$ with the basis $\{1, \zeta_p, \ldots, \zeta_p^{p-2}\}$. Let G be the cyclic group $\text{Gal}(\mathbb{Q}(\zeta_p) : \mathbb{Q})$.
 (a) Write down the matrix of multiplication by ζ_p in this basis.
 (b) Find the trace and determinant of this matrix.
 (*c) Find its characteristic polynomial.
 (*d) Explicitly compute $\sum_{\sigma \in G} \sigma(\zeta_p)$ and $\prod_{\sigma \in G} \sigma(\zeta_p)$ and show that they equal your answers from parts (b),(d).

Lior Silberman’s Math 501: Problem Set 8 (due 13/11/2020)

(From PS7) Example: Cyclotomic fields
The trace

When \(L/K \) is a finite Galois extension and \(\alpha \in L \) we encounter in class the combination ("trace")

\[
\text{Tr}_K^L(\alpha) = \sum_{\sigma \in \text{Gal}(L/K)} \sigma \alpha,
\]

which we need to be non-zero. We will study this construction when \(L/K \) is a finite separable extension, fixed for the purpose of the problems 5-7.

5. Let \(N/K \) be a finite normal extension containing \(L \).
 (a) For \(\alpha \in L \) we provisionally set
 \[
 \text{Tr}_K^L(\alpha) = \sum_{\mu \in \text{Hom}_K(L,N)} \mu \alpha
 \]
 "trace of \(\alpha \)"
 \[
 N_K^L(\alpha) = \prod_{\mu \in \text{Hom}_K(L,N)} \mu \alpha
 \]
 "norm of \(\alpha \)"
 Where the sum and product range over all \(K \)-embeddings of \(L \) in \(N \). Show that the definition is independent of the choice of \(N \).
 (b) Making a judicious choice of \(N \) show that the trace and norm defined in part (a) are elements of \(K \).
 (c) Show that when \(L/K \) is a Galois extension the definition from part (a) reduces to the combination used in class.

6. (Elements of zero trace) In the application in class we are interested in \(L_0 = \{ \alpha \in L \mid \text{Tr}_K^L(\alpha) = 0 \} \).
 (a) Show that \(\text{Tr}_K^L : L \to K \) is a \(K \)-linear functional on \(L \), so that \(L_0 \) is a \(K \)-subspace of \(L \).
 (b) When \(\text{char}(K) = 0 \), show that \(L = K \oplus L_0 \) as vector spaces over \(K \) (direct sum of vector spaces; the analogue of direct product of groups). Conclude that when \([L : K] \geq 2 \) the set \(L_0 \setminus K \) is non-empty.
 (e.g. the normal closure).
 (c) Show that \(\text{Tr}_K^L \) is a non-zero linear functional in all characteristics.
 (d) Show that \(L_0 \) is not contained in \(K \) unless \([L : K] = \text{char}(K) = 2 \), in which case \(L_0 = K \), or \([L : K] = 1 \) in which case \(L_0 = \{0\} \).

7. (Yet another definition) We continue with the separable extension \(L/K \) of degree \(n \).
 (a) Let \(f \in K[x] \) be the (monic) minimal polynomial of \(\alpha \in L \), say that \(f = \sum_{i=0}^d a_i x^i \) with \(a_d = 1 \).
 Show that \(\text{Tr}_K^K(\alpha) = -a_{d-1} \) and that \(N_K^K(\alpha) = (-1)^{d}a_0 \).
 \(\text{Hint} \): Recall the proof that \([L : K] \) has \(n \) embeddings into a normal closure.
 (b) Show that \(\text{Tr}_K^L(\alpha) = -\frac{1}{n}a_{d-1} \) and that \(N_K^L(\alpha) = (-1)^n a_0^{n/d} \).
 \(\text{Hint} \): Show that we have \(L \simeq (K(\alpha))^{n/d} \) as \(K(\alpha) \)-vector spaces.

 Definition. From now on we define the trace and norm of \(\alpha \) as in 7(c). Note that this definition makes sense even if \(L/K \) is not separable.

8. (Transitivity) Let \(K \subseteq L \subseteq M \) be a tower of finite extensions. Show that
 (a) \(\text{Tr}_K^M = \text{Tr}_K^L \circ \text{Tr}_L^M \).
 (b) \(N_K^M = N_K^L \circ N_L^M \).
Supplementary problems

A. (Purely inseparable extension) Let L/K be an purely inseparable algebraic extension of fields of characteristic p.

(a) For every $\alpha \in L$ show that there exists $r \geq 0$ so that $\alpha^{p^r} \in K$. In fact, show that the minimal polynomial of α is of the form $x^{p^r} - \alpha^{p^r}$.

Hint: Consider the minimal polynomials of α and α^p.

(b) Conclude that when $[L : K]$ is finite it is a power of p.

(c) When $[L : K]$ is finite show that $\text{Tr}_{L/K}$ is identically zero.

B. Let $L = \mathbb{C}(x)$ (the field of rational functions in variable) and for $f \in L$ let $(\sigma(f))(x) = f(\frac{1}{x})$, $(\tau(f))(x) = f(1-x)$.

(a) Show that $\sigma, \tau \in \text{Aut}(L)$ and that $\sigma^2 = \tau^2 = 1$.

(b) Show that $G = \langle \sigma, \tau \rangle$ is a subgroup of order 6 of $\text{Aut}(L)$ and find its isomorphism class.

(c) Let $K = \text{Fix}(G)$. Find this field explin elements $\alpha \in L$ with trace zero. For this, leticitly.