Lior Silberman's Math 422/501: Problem Set 7 (due 6/11/2020)

Galois theory

1. Let L / K be a finite Galois extension. Let $K \subset M_{1}, M_{2} \subset L$ be two intermediate fields. Show that the following are equivalent:
(1) M_{1} / K and M_{2} / K are isomorphic extensions.
(2) There exists $\sigma \in \operatorname{Gal}(L: K)$ such that $\sigma\left(M_{1}\right)=M_{2}$.
(3) $\operatorname{Gal}\left(L: M_{i}\right)$ are conjugate subgroups of $\operatorname{Gal}(L: K)$.
2. (V-extensions) Let K have characteristic different from 2.
(a) Suppose L / K is normal, separable, with Galois group $C_{2} \times C_{2}$. Show that $L=K(\alpha, \beta)$ with $\alpha^{2}, \beta^{2} \in K$.
(b) Suppose $a, b \in K$ are such that none of $a, b, a b$ is a square in K. Show that $\operatorname{Gal}(K(\sqrt{a}, \sqrt{b}): K) \simeq$ $C_{2} \times C_{2}$.
3. (The generalized quaternion group). Let G be a non-commutative group of order 8 . Show that either $G \simeq D_{8}=C_{2} \ltimes C_{4}$ or $G \simeq Q_{8}=\left\langle i, j, k \mid i^{2}=j^{2}=k^{2}, i^{4}=1, i j=k, j i=i^{2} k\right\rangle$ (the elememt $i^{2}=j^{2}=$ k^{2} is usually denoted -1 so the elements of the group are $\{ \pm 1, \pm i, \pm j, \pm k\}$.
**4. Let $\alpha=\sqrt{(2+\sqrt{2})(3+\sqrt{3})}$.
(a) Show that $[\mathbb{Q}(\alpha): \mathbb{Q}]=8$ and that this extension is normal.
(b) Show that $\operatorname{Gal}(\mathbb{Q}(\alpha): \mathbb{Q}) \simeq Q_{8}$.

The fundamental theorem of algebra

5. (Preliminaries)
(a) Show that every finite extension of \mathbb{R} has even order.
(b) Show that every quadratic extension of \mathbb{R} is isomorphic to \mathbb{C}.
6. (Punch-line)
(a) Let $F: \mathbb{R}$ be a finite extension. Show that $[F: \mathbb{R}]$ is a power of 2 .

Hint: Consider the 2-Sylow subgroup of the Galois group of the normal closure.
(b) Show that every proper algebraic extension of \mathbb{R} contains \mathbb{C}.
(c) Show that every proper extension of \mathbb{C} contains a quadratic extension of \mathbb{C}.
(d) Show that $\mathbb{C}: \mathbb{R}$ is an algebraic closure.

Example: Cyclotomic fields

PRAC For practice (but not for submission)
(a) Show that $x^{n}-1 \in \mathbb{Q}[x]$ has n distinct roots.
(b) Write μ_{n} for the set of roots of this polynomial. Show that it forms a cyclic group of order n.

DEF μ_{n} is called the group of roots of unity of order [dividing] n. A root of unity $\zeta \in \mu_{n}$ is called primitive if it is a generator, that is if it has order exactly n. We write ζ_{n} for a primitive root of unity of order n, for example $e^{\frac{2 \pi i}{n}} \in \mathbb{C}$ (by problem $6(\mathrm{a})$ the choice doesn't matter). For the purpose of the problem set we also write $P_{n} \subset \mu_{n}$ for the set of primitive roots of unity of order n. The polynomial $\Phi_{n}(x)=\prod_{\zeta \in P_{n}}(x-\zeta)$ is called the nth cyclotomic polynomial. The field $\mathbb{Q}\left(\zeta_{n}\right)$ is called the nth cyclotomic field.
(c) Show that $\prod_{d \mid n} \Phi_{d}(x)=x^{n}-1$. We'll later show that this is the factorization of $x^{n}-1$ into irreducibles in $\mathbb{Q}[x]$.
6. Let ζ_{n} be a primitive nth root of unity.
(a) Show that $\mathbb{Q}\left(\zeta_{n}\right)$ is the splitting field of $x^{n}-1$ over \mathbb{Q}.
(b) Let $G=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right): \mathbb{Q}\right)$. For $\sigma \in G$ show there is a unique $j \in(\mathbb{Z} / n \mathbb{Z})^{\times}$so that $\sigma\left(\zeta_{n}\right)=\zeta_{n}^{j(\sigma)}$ and that $j: G \rightarrow(\mathbb{Z} / n \mathbb{Z})^{\times}$is an injective homomorphism (we'll later show that this map is an isomorphism).
(c) Show that $\Phi_{n}(x) \in \mathbb{Q}[x]$ and that the degree of Φ_{n} is exactly $\phi(n)=\#(\mathbb{Z} / n \mathbb{Z})^{\times}$.
7. (prime power and prime order) Fix an odd prime p and let $r \geq 1$.
(a) Show that $\Phi_{p^{r}}(x)=\frac{x^{p^{r}}-1}{x^{p^{r-1}}-1}$ and that this polynomial is irreducible.
(b) Show that $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p^{r}}\right): \mathbb{Q}\right) \simeq\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$.

RMK Parts (a),(b) hold for $p=2$ as well.
(c) Show that $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p^{r}}\right): \mathbb{Q}\right)$ is cyclic.
(d) Show that $\mathbb{Q}\left(\zeta_{p}\right)$ has a unique subfield K so that $[K: \mathbb{Q}]=2$.
(e) Let $G=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right): \mathbb{Q}\right)$. Show that there is a unique non-trivial homomorphism $\chi: G \rightarrow\{ \pm 1\}$.
(f) Let $g=\sum_{\sigma \in G} \chi(\sigma) \sigma\left(\zeta_{p}\right)$ (the "Gauss sum"). Show that $g \in K$ and that $g^{2} \in \mathbb{Q}$.
$\left({ }^{*} \mathrm{~g}\right)$ Show that $g^{2}=(-1)^{\frac{p-1}{2}} p$, hence that $K=\mathbb{Q}(g)$.

