
Galois theory

1. Let L/K be a finite Galois extension. Let $K \subset M_1, M_2 \subset L$ be two intermediate fields. Show that the following are equivalent:
 (1) M_1/K and M_2/K are isomorphic extensions.
 (2) There exists $\sigma \in \text{Gal}(L : K)$ such that $\sigma(M_1) = M_2$.
 (3) $\text{Gal}(L : M_i)$ are conjugate subgroups of $\text{Gal}(L : K)$.

2. (V-extensions) Let K have characteristic different from 2.
 (a) Suppose L/K is normal, separable, with Galois group $C_2 \times C_2$. Show that $L = K(\alpha, \beta)$ with $\alpha^2, \beta^2 \in K$.
 (b) Suppose $a, b \in K$ are such that none of a, b, ab is a square in K. Show that $\text{Gal}(K(\sqrt{a}, \sqrt{b}) : K) \simeq C_2 \times C_2$.

3. (The generalized quaternion group). Let G be a non-commutative group of order 8. Show that either $G \simeq D_8 = C_2 \rtimes C_4$ or $G \simeq Q_8 = \langle i, j, k \mid i^2 = j^2 = k^2, i^4 = 1, ij = k, ji = i^2k \rangle$ (the element $i^2 = j^2 = k^2$ is usually denoted -1 so the elements of the group are $\{ \pm 1, \pm i, \pm j, \pm k \}$).

4. Let $\alpha = \sqrt{(2 + \sqrt{2})(3 + \sqrt{3})}$.
 (a) Show that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 8$ and that this extension is normal.
 (b) Show that $\text{Gal}(\mathbb{Q}(\alpha) : \mathbb{Q}) \simeq Q_8$.

The fundamental theorem of algebra

5. (Preliminaries)
 (a) Show that every finite extension of \mathbb{R} has even order.
 (b) Show that every quadratic extension of \mathbb{R} is isomorphic to \mathbb{C}.

6. (Punch-line)
 (a) Let $F : \mathbb{R}$ be a finite extension. Show that $[F : \mathbb{R}]$ is a power of 2.

 Hint: Consider the 2-Sylow subgroup of the Galois group of the normal closure.
 (b) Show that every proper algebraic extension of \mathbb{R} contains \mathbb{C}.
 (c) Show that every proper extension of \mathbb{C} contains a quadratic extension of \mathbb{C}.
 (d) Show that $\mathbb{C} : \mathbb{R}$ is an algebraic closure.
Example: Cyclotomic fields

(a) Show that \(x^n - 1 \in \mathbb{Q}[x] \) has \(n \) distinct roots.
(b) Write \(\mu_n \) for the set of roots of this polynomial. Show that it forms a cyclic group of order \(n \).

DEF \(\mu_n \) is called the group of roots of unity of order \(n \). A root of unity \(\zeta \in \mu_n \) is called primitive if it is a generator, that is if it has order exactly \(n \). We write \(\zeta^n \) for a primitive root of unity of order \(n \), for example \(e^{2\pi i/n} \in \mathbb{C} \) (by problem 6(a) the choice doesn’t matter). For the purpose of the problem set we also write \(\mathbb{P}_n \subset \mu_n \) for the set of primitive roots of unity of order \(n \). The polynomial \(\Phi_n(x) = \prod_{\zeta \in \mathbb{P}_n} (x - \zeta) \) is called the \(n \)th cyclotomic polynomial. The field \(\mathbb{Q}(\zeta_n) \) is called the \(n \)th cyclotomic field.

(c) Show that \(\prod_{d|n} \Phi_d(x) = x^n - 1 \). We’ll later show that this is the factorization of \(x^n - 1 \) into irreducibles in \(\mathbb{Q}[x] \).

6. Let \(\zeta_n \) be a primitive \(n \)th root of unity.
(a) Show that \(\mathbb{Q}(\zeta_n) \) is the splitting field of \(x^n - 1 \) over \(\mathbb{Q} \).
(b) Let \(G = \text{Gal}(\mathbb{Q}(\zeta_n) : \mathbb{Q}) \). For \(\sigma \in G \) show there is a unique \(j \in (\mathbb{Z}/n\mathbb{Z})^\times \) so that \(\sigma(\zeta_n) = \zeta_n^{j(\sigma)} \) and that \(j : G \to (\mathbb{Z}/n\mathbb{Z})^\times \) is an injective homomorphism (we’ll later show that this map is an isomorphism).
(c) Show that \(\Phi_n(x) \in \mathbb{Q}[x] \) and that the degree of \(\Phi_n \) is exactly \(\phi(n) = \#(\mathbb{Z}/n\mathbb{Z})^\times \).

7. (prime power and prime order) Fix an odd prime \(p \) and let \(r \geq 1 \).
(a) Show that \(\Phi_{p^r}(x) = \frac{x^{p^r} - 1}{x^p - 1} \) and that this polynomial is irreducible.
(b) Show that \(\text{Gal}(\mathbb{Q}(\zeta_{p^r}) : \mathbb{Q}) \simeq (\mathbb{Z}/p\mathbb{Z})^\times \).
RMK Parts (a),(b) hold for \(p = 2 \) as well.
(c) Show that \(\text{Gal}(\mathbb{Q}(\zeta_p) : \mathbb{Q}) \) is cyclic.
(d) Show that \(\mathbb{Q}(\zeta_p) \) has a unique subfield \(K \) so that \([K : \mathbb{Q}] = 2 \).
(e) Let \(G = \text{Gal}(\mathbb{Q}(\zeta_p) : \mathbb{Q}) \). Show that there is a unique non-trivial homomorphism \(\chi : G \to \{\pm 1\} \).
(f) Let \(g = \sum_{\sigma \in G} \chi(\sigma)\sigma(\zeta_p) \) (the “Gauss sum”). Show that \(g \in K \) and that \(g^2 \in \mathbb{Q} \).
(*g) Show that \(g^2 = (-1)^{\frac{p-1}{2}} p \), hence that \(K = \mathbb{Q}(g) \).