Lior Silberman's Math 501: Problem Set 5 (due 16/10/2020) Finite fields

- 1. (The Frobenius map) Let K be a field of characteristic p > 0.
 - (a) Show that the map $x \mapsto x^p$ defines a monomorphism $K \to K$ fixing the prime field.
 - (b) Conclude by induction that the same holds for the map $x \mapsto x^{p^r}$ for any $r \ge 1$.
 - (c) When K is finite show that the Frobenius map is an automorphism.
 - (*d) When K is an arbitrary algebraic extension of \mathbb{F}_p show that the Frobenius map is again an automorphism.
 - FACT We obtain a group homomorphism $\mathbb{Z} \to \operatorname{Gal}(\overline{\mathbb{F}}_p : \mathbb{F}_p)$. We will later show that the image of this homomorphism is dense.
- 2. (Multiplicative groups)
 - (a) Let G be a finite p-group such that for every d, $|\{g \in G \mid g^d = e\}| \leq d$. Show that G is cyclic.
 - (b) Let G be a finite group such that for every d, $|\{g \in G \mid g^d = e\}| \leq d$. Show that G is cyclic.
 - (*c) Let F be a field, $G \subset F^{\times}$ a finite multiplicative subgroup. Show that G is cyclic.
- 3. (Uniqueness of finite fields) Fix a prime p and let $q = p^r$ for some $r \ge 1$.
 - (a) Show that the polynomial $x^q x \in \mathbb{F}_p[x]$ is separable.
 - (b) Let F be a finite field with q elements. Show that F is a splitting field for $x^q x$ over \mathbb{F}_p .
 - (c) Conclude that for each q there is at most one isomorphism class of fields of order q. If such a field exists it is denoted \mathbb{F}_q .
- 4. (Existence of finite fields) Fix a prime p and let $q = p^r$ for some $r \ge 1$.
 - (a) Let F/\mathbb{F}_p be a splitting field for $x^q x$, and let $\sigma \colon F \to F$ be the map $\sigma(x) = x^q$. Show that the polynomial also splits in the fixed field of σ .
 - (b) Conclude that the field F has order q.
- 5. Let F be a finite field, K/F a finite extension.
 - (a) Show that the extension K/F is normal and separable.
 - (b) Show that the extension is *simple*: there exists $\alpha \in K$ so that $K = F(\alpha)$.

Simple extensions

- *6. Let $K(\alpha) : K$ be a simple extension.
 - (a) If α is algebraic, show that there are finitely many subfields M of $K(\alpha)$ containing K. Hint: consider the minimal polynomial of α over M.
 - (b) If α is transcendental, show that there are infinitely many intermediate fields M.
- 7. Let L: K be an extension of fields with finitely many intermediate subfields.
 - (a) Show that the extension is algebraic.
 - (b) Show that the extension is *finitely generated*: there exists a finite subset $S \subset L$ so that L = K(S).
 - (c) Show that the extension is finite.
- **8. Let L : K be an extension of infinite fields with finitely many intermediate fields. Show that it is a simple algebraic extension.
 - RMK We will later show that every separable extension satisfies the hypothesis. For finite fields see 5(b).

Supplementary problem: Algebraicity and algebraic closures

- A. Let L: K be an extension of fields
 - (a) Let $\alpha \in L$. Show that α is algebraic if and only if there a subset $E \subset L$ such that: (1) E is a subspace of L, thought of as a K-vector space; (2) $\alpha E \subset E$.
 - (b) Obtain a new proof of Corollary 111 as follows: if $\alpha, \beta \in L$ stabilize $E, F \subset L$ respectively, then the required elements stabilizer an image of $E \otimes_K F$ in L, which is necessarily finite-dimensional.
- B. Let M: L and L: K be algebraic extensions of fields. Show that M: K is algebraic.

DEFINITION. A field extension $K \hookrightarrow \overline{K}$ is called an *algebraic closure* if it is algebraic, and if every polynomial in K[x] splits in $\bar{K}[x]$. We also say informally that \bar{K} is an algebraic closure of K.

RMK The following problems depend on basic notions from set theory: cardinality and Zorn's Lemma. C. Let $K \hookrightarrow L$ be an algebraic extension.

- (a) If K is finite, show that $|L| \leq \aleph_0$.
- (b) If K is infinite, show that |L| = |K|.
- D. Let $K \hookrightarrow \overline{K}$ be an algebraic closure. Show that every algebraic extension of \overline{K} is an isomorphism of fields.
- E. (Existence of algebraic closures) Let K be a field, X an infinite set containing K with |X| > |K|. Let 0,1 denote these elements of $K \subset X$. Let

 $\mathcal{F} = \{(L,+,\cdot) \mid K \subset L \subset X, (L,0,1,+,\cdot) \text{ is a field with } K \subset L \text{ an algebraic extension} \}.$

Note that we are assuming that restricting $+, \cdot$ to K gives the field operations of K.

- (a) Show that \mathcal{F} is a set. Note that $\{(\varphi, L) \mid L \text{ is a field and } \varphi \colon K \to L \text{ is an algebraic extension}\}$ is not a set.
- (b) Show that every algebraic extension of K is isomorphic to an element of \mathcal{F} .
- (c) Given $(L, +, \cdot)$ and $(L', +', \cdot') \in \mathcal{F}$ say that $(L, +, \cdot) \leq (L', +', \cdot')$ if $L \subseteq L', + \subseteq +', \cdot \subseteq \cdot'$. Show that this is a transitive relation.
- (d) Let $\overline{K} \in \mathcal{F}$ be maximal with respect to this order. Show that \overline{K} is an algebraic closure of K.
- (e) Show that K has algebraic closures.
- F. (Uniqueness of algebraic closures) Let $K \hookrightarrow \overline{K}$ and $K \hookrightarrow L$ be two algebraic closures of K. Show that the two extensions are isomorphic.

Hint: Let \mathcal{G} be the set of K-embeddings intermediate subfields $K \subset M \subset L$ into \overline{K} , ordered by inclusion.