Lior Silberman's Math 501: Problem Set 4 (due 9/10/2020)

Prime fields and the characteristic

- 1. Let R be a ring.
 - (a) Show that there is a unique ring homomorphism $\varphi \colon \mathbb{Z} \to R$. We generally identify $n \in \mathbb{Z}$ with $\varphi(n) \in R$.
 - (b) Let $p \ge 0$ be such that $\operatorname{Ker}(\varphi) = (p)$. If R is a field show that either p = 0 or p is prime.

DEFINITION. We call p the *characteristic* of the field.

- (c) Let K be a field of characteristic p > 0. Show that the image of φ is the minimal subfield of K ("prime subfield"), and that it is isomorphic to the field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.
- (*c) Let K be a finite field. Show that there exists a prime p and a natural number n so that $|K| = p^n$.
- (d) Let K be a field of characteristic zero. Show that there is a unique homomorphism $\mathbb{Q} \hookrightarrow K$ and conclude that the minimal subfield ("prime subfield") of K is isomorphic to \mathbb{Q} .

Quadratic fields

Let K be a field of characteristic not equal to 2. Write K^{\times} for the multiplicative group of K, $(K^{\times})^2$ for its subgroup of squares.

- 2. (Reduction to squares) Let L: K be an extension of degree 2.
 - (a) Show that there exists $\alpha \in L$ such that $K(\alpha) = L$. What is the degree of the minimal polynomial of α ?
 - (b) Show that we can choose α so that $\alpha^2 = d \in K^{\times}$, in which case L: K is isomorphic to $K(\sqrt{d}): K$.
- 3. (Classifying the extensions)
 - (a) Assume that $d \in K^{\times}$ is not a square. Show that $e \in K$ is a square in $K(\sqrt{d})$ iff $e = df^2$ for some $f \in K$. Where did you use the assumption about the characteristic?
 - (b) Show that the extensions $K(\sqrt{d})$ and $K(\sqrt{e})$ are isomorphic iff $\frac{d}{e} \in (K^{\times})^2$ (in general, the isomorphism will not send \sqrt{d} to \sqrt{e}).

Hint: Construct a K-homomorphism $K(\sqrt{e}) \to K(\sqrt{d})$. Why is it surjective? Injective?

(c) Show that quadratic extensions of K are in bijection with non-trivial elements of the group $K^{\times}/(K^{\times})^2$. RMK Note that $\mathbb{R}^{\times}/(\mathbb{R}^{\times})^2 \simeq \{\pm 1\}$, so the real numbers have a unique quadratic extension. See also the first supplementary problems to PS3.