Lior Silberman's Math 501: Problem Set 4 (due 9/10/2020)

Prime fields and the characteristic

1. Let R be a ring.
(a) Show that there is a unique ring homomorphism $\varphi: \mathbb{Z} \rightarrow R$. We generally identify $n \in \mathbb{Z}$ with $\varphi(n) \in R$.
(b) Let $p \geq 0$ be such that $\operatorname{Ker}(\varphi)=(p)$. If R is a field show that either $p=0$ or p is prime.

Definition. We call p the characteristic of the field.
(c) Let K be a field of characteristic $p>0$. Show that the image of φ is the minimal subfield of K ("prime subfield"), and that it is isomorphic to the field $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$.
$\left({ }^{*} \mathrm{c}\right)$ Let K be a finite field. Show that there exists a prime p and a natural number n so that $|K|=p^{n}$.
(d) Let K be a field of characteristic zero. Show that there is a unique homomorphism $\mathbb{Q} \hookrightarrow K$ and conclude that the minimal subfield ("prime subfield") of K is isomorphic to \mathbb{Q}.

Quadratic fields

Let K be a field of characteristic not equal to 2 . Write K^{\times}for the multiplicative group of $K,\left(K^{\times}\right)^{2}$ for its subgroup of squares.
2. (Reduction to squares) Let $L: K$ be an extension of degree 2 .
(a) Show that there exists $\alpha \in L$ such that $K(\alpha)=L$. What is the degree of the minimal polynomial of α ?
(b) Show that we can choose α so that $\alpha^{2}=d \in K^{\times}$, in which case $L: K$ is isomorphic to $K(\sqrt{d}): K$.
3. (Classifying the extensions)
(a) Assume that $d \in K^{\times}$is not a square. Show that $e \in K$ is a square in $K(\sqrt{d})$ iff $e=d f^{2}$ for some $f \in K$. Where did you use the assumption about the characteristic?
(b) Show that the extensions $K(\sqrt{d})$ and $K(\sqrt{e})$ are isomorphic iff $\frac{d}{e} \in\left(K^{\times}\right)^{2}$ (in general, the isomorphism will not send \sqrt{d} to \sqrt{e}).
Hint: Construct a K-homomorphism $K(\sqrt{e}) \rightarrow K(\sqrt{d})$. Why is it surjective? Injective?
(c) Show that quadratic extensions of K are in bijection with non-trivial elements of the group $K^{\times} /\left(K^{\times}\right)^{2}$. RMK Note that $\mathbb{R}^{\times} /\left(\mathbb{R}^{\times}\right)^{2} \simeq\{ \pm 1\}$, so the real numbers have a unique quadratic extension. See also the first supplementary problems to PS3.

