Lior Silberman's Math 501: Problem Set 3 (due 2/10/2020)

Fields and extensions

- 1. (Concrete extensions) By Eisenstein's criterion and Gauss's Lemma, the polynomials $x^2 2, x^3 2 \in \mathbb{Q}[x]$ are irreducible. Without using tools from abstract algebra (except that a root of an irreducible polynomial isn't also a root of a polynomial of smaller degree):
 - (a) Let $K = \mathbb{Q}(\alpha)$ where $\alpha^2 = 2$ (this means: "K is an extension of \mathbb{Q} generated by an element α so that $\alpha^2 = 2$ "). Show that $\{1, \alpha\} \subset K$ are linearly independent over \mathbb{Q} .
 - (b) Show that $\{1, \alpha\}$ spans K (hint: you need to show that the span is a subfield of K; start by showing it's a subring). Conclude that $[K : \mathbb{Q}] = 2$.
 - (c) Repeat with appropriate modifications for $L = \mathbb{Q}(\beta)$ where $\beta^3 = 2$.
- 2. (The hard way) Continuing with the notation of proble 1, let $\gamma \in L$ satisfy $\gamma^3 = 2$.
 - (a) Write $\gamma = a + b\beta + c\beta^2$ and convert the equation $\beta^3 = 2 = 2 + 0\alpha + 0\alpha^2$ to a system of three non-linear equations in the three variables a, b, c (justify your claim!).
 - (b) Taking a clever linear combination of two of the equations, show that a = 0.
 - (c) Now show that b = 1, c = 0, that is that $\gamma = \beta$.
- 3. (The easy way) Let $\gamma \in L$ satisfy $\gamma^3 = 2$ and suppose $\gamma \neq \beta$.
 - (a) Show that $\zeta = \gamma/\beta$ satisfies $\zeta^3 = 1$.
 - (b) Let $m \in \mathbb{Q}[x]$ be the minimal polynomial of ζ over \mathbb{Q} . Show that deg m = 2. *Hint*: Start by showing that m is an irreducible factor of $x^3 - 1$.
 - (c) Consider the field $\mathbb{Q}(\zeta) \subset L$. Show that $[\mathbb{Q}(\zeta) : \mathbb{Q}] = 2$ and obtain a contradiction. *Hint:* $[L : \mathbb{Q}] = [L : \mathbb{Q}(\zeta)] \cdot [\mathbb{Q}(\zeta) : \mathbb{Q}].$

*4. Let $K = \mathbb{Q}(\sqrt{2} + \sqrt{3}) \subset L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Show that K = L.

Fields of fractions

- 5. Let R be an integral domain.
 - (a) Consider the set X of formal expressions $\frac{a}{b}$ where $a, b \in R$ and $b \neq 0$. Define a relation on X by $\frac{a}{b} \sim \frac{c}{d}$ if ad = bc. Show that this is an equivalence relation.
 - (b) Let \tilde{F} be the set X/\sim of equivalence relations, and define operations on F by $\left[\frac{a}{b}\right] + \left[\frac{c}{d}\right] = \left[\frac{ad+bc}{bd}\right]$, $\left[\frac{a}{b}\right] \cdot \left[\frac{c}{d}\right] = \left[\frac{ac}{bd}\right]$. Show that these are well-defined and give F the structure of a ring.
 - (c) Show that F is a field, and that $a \mapsto \begin{bmatrix} a \\ 1 \end{bmatrix}$ defines an embedding $\iota \colon R \to F$.
 - DEF F is called the *field of fractions* of R. If K is a field, the field of fractions of the polynomial ring K[x] is called the *field of rational functions* (in one variable) over K and denoted K(x).
 - (d) Show that for any field K, any injective ring homomorphism $\iota: R \to K$ extends uniquely to a homomorphism $F \to K$ compatible with ι .
- 6. Fix an extension of fields $\iota \colon K \to L$.
 - (a) Carefully show that for any $\alpha \in L$ there is a unique homomorphism of rings $\psi_{\alpha} \colon K[x] \to L$ ("evaluation at α ") restricting to ι on K and satisfying $\psi_{\alpha}(x) = \alpha$.
 - (b) Suppose that α is transcendental over K. Show that ι extends uniquely to a map $\tilde{\psi}_{\alpha} \colon K(x) \to L$ so that $\tilde{\psi}_{\alpha}(x) = \tilde{\psi}_{\alpha}(\frac{x}{1}) = \alpha$.

Supplement I: the two quadratic \mathbb{R} -algebras

- A. Let *i* be a formal symbol, and let \mathbb{C} be the set of formal expressions a + bi where $a, b \in \mathbb{R}$. Set $(a+bi) + (c+di) \stackrel{\text{def}}{=} (a+c) + (b+d)i$ and $(a+bi) \cdot (c+di) \stackrel{\text{def}}{=} (ac-bd) + (ad+bc)i$.
 - (a) Show that the definition makes \mathbb{C} into a ring.
 - (b) Show that $\{a + 0i \mid a \in \mathbb{R}\}$ is a subfield of \mathbb{C} isomorphic to \mathbb{R} .
 - (c) Show that the *complex conjugation* map $\tau(a+bi) = a bi$ is a ring isomorphism $\tau : \mathbb{C} \to \mathbb{C}$ which restricts to the identity map on the image of \mathbb{R} from part (b).

- (d) Show that for $z \in \mathbb{C}$ the condition $z \in \mathbb{R}$ and $\tau z = z$ are equivalent. Conclude that $Nz = N_{\mathbb{R}}^{\mathbb{C}} z \stackrel{\text{def}}{=}$ $z \cdot \tau z$ is a multiplicative map $\mathbb{C} \to \mathbb{R}$.
- (e) Show that \mathbb{C} is a field. *Hint*: Show first that if $z \in \mathbb{C}$ is non-zero then Nz is non-zero
- B. Let \mathbb{R} be the field of real numbers. Let $A = \{a + bi \mid a, b \in \mathbb{R}\}$ where i is a formal symbol, and define $(a+bi) + (c+di) \stackrel{\text{def}}{=} (a+b) + (c+d)i, \ (a+bi)(c+di) \stackrel{\text{def}}{=} (ac+2bd) + (ad+bc)i.$
 - (a) Show that the definition makes A into a ring.
 - (b) Show that $\{a + 0i \mid a \in \mathbb{R}\}$ is a subfield of A isomorphic to \mathbb{R} .
 - (c) Show that the *complex conjugation* map $\tau(a+bi) = a-bi$ is a ring isomorphism $\tau: A \to A$ which restricts to the identity map on the image of \mathbb{R} from part (b).
 - (d) Show that for $z \in A$ the condition $z \in \mathbb{R}$ and $\tau z = z$ are equivalent. Conclude that $Nz = N_{\mathbb{R}}^{A} z \stackrel{\text{def}}{=}$ $z \cdot \tau z$ is a multiplicative map $A \to \mathbb{R}$.
 - (e) Show that $A \simeq \mathbb{R} \oplus \mathbb{R}$, and in particular that it is not a field.
 - (f) Assume that multiplication is defined by $(a + bi)(c + di) \stackrel{\text{def}}{=} (ac + tbd) + (ad + bc)i$ for some fixed $t \in \mathbb{R}$. For which t is the algebra a field? Find the isomorphism class of the algebra, depending on t.

Supplement II: More on Laurent series

DEFINITION. Let R be a ring. A formal Laurent series over R is a formal sum $f(x) = \sum_{i>i_0} a_i x^i$, in other words a function $a: \mathbb{Z} \to R$ for which there exists $i_0 \in \mathbb{Z}$ so that $a_i = 0$ for all $i \leq i_0$. We define addition and multiplication in the obvious way and write R((x)) for the set of Laurent series. For non-zero $f \in R((x))$ let $v(f) = \min\{i \mid a_i \neq 0\}$ ("order of vanishing at 0"; also set $v(0) = \infty$). Then set $|f| = q^{-v(f)}$ (|0| = 0) where q > 1 is a fixed real number.

- C. (Invertibility)
 - (a) Show that 1 x is invertible in R[[x]].

Hint: Find a candidate series for $\frac{1}{1-x}$ and calculate the product. (b) Show that $R[[x]]^{\times} = \{a + xf \mid a \in \mathbb{R}^{\times}, f \in R[[x]]\}.$

- (c) Show that $f \in R((x))$ is invertible iff it is non-zero and $a_{v(f)} \in R^{\times}$.
- (d) Show that F((x)) is a field for any field F.
- D. (Locality) Let F be a field.
 - (a) Let $I \triangleleft F[[x]]$ be a non-zero ideal. Show that $I = x^n F[[x]]$ for some $n \ge 1$. *Hint*: Show that every nonzero $f \in F[[x]]$ can be uniquely written in the form $x^{\nu(f)}g(x)$ where $g \in F[[x]]^{\times}.$
 - (b) Show that the natural map $F[x]/x^n F[x] \to F[[x]]/x^n F[[x]]$ is an isomorphism.

- E. (Completeness)
 - (a) Show that v(fg) = v(f) + v(g), equivalently that |fg| = |f||g| for all $f, g \in R((x))$.
 - (b) Prove the ultrametric inequality $v(f+g) \ge \min \{v(f), v(g)\} \iff |f+g| \le \max \{|f|, |g|\}$ and conclude that d(f,g) = |f-g| defines a metric on f.
 - (c) Show that $\{f_n\}_{n=1}^{\infty} \subset R((x))$ is a Cauchy sequence iff there exists i_0 such that $v(f_n) \ge i_0$ for all n, and if for each i there exists N = N(i) and $r \in R$ so that for $n \ge N$ the coefficient of x^i in f_n is r.
 - (d) Show that (R((x)), d) is complete metric space.
 - (e) Show that R[[x]] is closed in R((x)).
 - (f) Show that R[[x]] is compact iff R is finite.
- F. (Ultrametric Analysis) Let $\{a_n\}_{n=1}^{\infty} \subset R((x))$. Show that $\sum_{n=1}^{\infty} a_n$ converges in R((x)) iff $\lim_{n\to\infty} a_n = 0$. *Hint*: Assume first that $a_n \in R[[x]]$ for all n, and for each k consider the projection of $\sum_{n=1}^{N} a_n$ to

Hint: Assume first that $a_n \in R[[x]]$ for all n, and for each k consider the projection of $\sum_{n=1}^{n} a_n$ to $R[[x]]/x^k R[[x]]$.

- G. (The degree valuation) Let F be a field.
 - (a) For $f \in F[x]$ set $v_{\infty}(f) = -\deg(f)$ (and set $v_{\infty}(0) = \infty$). Show that $v_{\infty}(fg) = v_{\infty}(f) + v_{\infty}(g)$. Show that $v_{\infty}(f+g) \ge \min\{v_{\infty}(f), v_{\infty}(g)\}$.
 - (b) Extend v_{∞} to the field F(x) of rational functions and show that it retains the properties above. For a rational function f you can think of $v_{\infty}(f)$ as "the order of f at ∞ ", just like v(f) measures the order of f at zero.
 - (c) Show that the completion of F(x) w.r.t. the metric coming from v_{∞} is exactly $R((\frac{1}{x}))$.