Lior Silberman's Math 501: Problem Set 3 (due 2/10/2020)

Fields and extensions

1. (Concrete extensions) By Eisenstein's criterion and Gauss's Lemma, the polynomials $x^{2}-2, x^{3}-2 \in$ $\mathbb{Q}[x]$ are irreducible. Without using tools from abstract algebra (except that a root of an irreducible polynomial isn't also a root of a polynomial of smaller degree):
(a) Let $K=\mathbb{Q}(\alpha)$ where $\alpha^{2}=2$ (this means: " K is an extension of \mathbb{Q} generated by an element α so that $\alpha^{2}=2 "$ ". Show that $\{1, \alpha\} \subset K$ are linearly independent over \mathbb{Q}.
(b) Show that $\{1, \alpha\}$ spans K (hint: you need to show that the span is a subfield of K; start by showing it's a subring). Conclude that $[K: \mathbb{Q}]=2$.
(c) Repeat with appropriate modifications for $L=\mathbb{Q}(\beta)$ where $\beta^{3}=2$.
2. (The hard way) Continuing with the notation of proble 1 , let $\gamma \in L$ satisfy $\gamma^{3}=2$.
(a) Write $\gamma=a+b \beta+c \beta^{2}$ and convert the equation $\beta^{3}=2=2+0 \alpha+0 \alpha^{2}$ to a system of three non-linear equations in the three variables a, b, c (justify your claim!).
(b) Taking a clever linear combination of two of the equations, show that $a=0$.
(c) Now show that $b=1, c=0$, that is that $\gamma=\beta$.
3. (The easy way) Let $\gamma \in L$ satisfy $\gamma^{3}=2$ and suppose $\gamma \neq \beta$.
(a) Show that $\zeta=\gamma / \beta$ satisfies $\zeta^{3}=1$.
(b) Let $m \in \mathbb{Q}[x]$ be the minimal polynomial of ζ over \mathbb{Q}. Show that $\operatorname{deg} m=2$. Hint: Start by showing that m is an irreducible factor of $x^{3}-1$.
(c) Consider the field $\mathbb{Q}(\zeta) \subset L$. Show that $[\mathbb{Q}(\zeta): \mathbb{Q}]=2$ and obtain a contradiction. Hint: $[L: \mathbb{Q}]=[L: \mathbb{Q}(\zeta)] \cdot[\mathbb{Q}(\zeta): \mathbb{Q}]$.
*4. Let $K=\mathbb{Q}(\sqrt{2}+\sqrt{3}) \subset L=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Show that $K=L$.

Fields of fractions

5. Let R be an integral domain.
(a) Consider the set X of formal expresions $\frac{a}{b}$ where $a, b \in R$ and $b \neq 0$. Define a relation on X by $\frac{a}{b} \sim \frac{c}{d}$ if $a d=b c$. Show that this is an equivalence relation.
(b) Let F be the set X / \sim of equivalence relations, and define operations on F by $\left[\frac{a}{b}\right]+\left[\frac{c}{d}\right]=\left[\frac{a d+b c}{b d}\right]$, $\left[\frac{a}{b}\right] \cdot\left[\frac{c}{d}\right]=\left[\frac{a c}{b d}\right]$. Show that these are well-defined and give F the structure of a ring.
(c) Show that F is a field, and that $a \mapsto\left[\frac{a}{1}\right]$ defines an embedding $\iota: R \rightarrow F$.

DEF F is called the field of fractions of R. If K is a field, the field of fractions of the polynomial ring $K[x]$ is called the field of rational functions (in one variable) over K and denoted $K(x)$.
(d) Show that for any field K, any injective ring homomorphism $\iota: R \rightarrow K$ extends uniquely to a homomorphism $F \rightarrow K$ compatible with ι.
6. Fix an extension of fields $\iota: K \rightarrow L$.
(a) Carefully show that for any $\alpha \in L$ there is a unique homomorphism of rings $\psi_{\alpha}: K[x] \rightarrow L$ ("evaluation at $\alpha^{\prime \prime}$) restricting to ι on K and satisfying $\psi_{\alpha}(x)=\alpha$.
(b) Suppose that α is transcendental over K. Show that ι extends uniquely to a map $\tilde{\psi}_{\alpha}: K(x) \rightarrow L$ so that $\tilde{\psi}_{\alpha}(x)=\tilde{\psi}_{\alpha}\left(\frac{x}{1}\right)=\alpha$.

Supplement I: the two quadratic \mathbb{R}-algebras

A. Let i be a formal symbol, and let \mathbb{C} be the set of formal expressions $a+b i$ where $a, b \in \mathbb{R}$. Set $(a+b i)+(c+d i) \stackrel{\text { def }}{=}(a+c)+(b+d) i$ and $(a+b i) \cdot(c+d i) \stackrel{\text { def }}{=}(a c-b d)+(a d+b c) i$.
(a) Show that the definition makes \mathbb{C} into a ring.
(b) Show that $\{a+0 i \mid a \in \mathbb{R}\}$ is a subfield of \mathbb{C} isomorphic to \mathbb{R}.
(c) Show that the complex conjugation map $\tau(a+b i)=a-b i$ is a ring isomorphism $\tau: \mathbb{C} \rightarrow \mathbb{C}$ which restricts to the identity map on the image of \mathbb{R} from part (b).
(d) Show that for $z \in \mathbb{C}$ the condition $z \in \mathbb{R}$ and $\tau z=z$ are equivalent. Conclude that $N z=N_{\mathbb{R}}^{\mathbb{C}} z \stackrel{\text { def }}{=}$ $z \cdot \tau z$ is a multiplicative map $\mathbb{C} \rightarrow \mathbb{R}$.
(e) Show that \mathbb{C} is a field.

Hint: Show first that if $z \in \mathbb{C}$ is non-zero then $N z$ is non-zero.
B. Let \mathbb{R} be the field of real numbers. Let $A=\{a+b i \mid a, b \in \mathbb{R}\}$ where i is a formal symbol, and define $(a+b i)+(c+d i) \stackrel{\text { def }}{=}(a+b)+(c+d) i,(a+b i)(c+d i) \stackrel{\text { def }}{=}(a c+2 b d)+(a d+b c) i$.
(a) Show that the definition makes A into a ring.
(b) Show that $\{a+0 i \mid a \in \mathbb{R}\}$ is a subfield of A isomorphic to \mathbb{R}.
(c) Show that the complex conjugation map $\tau(a+b i)=a-b i$ is a ring isomorphism $\tau: A \rightarrow A$ which restricts to the identity map on the image of \mathbb{R} from part (b).
(d) Show that for $z \in A$ the condition $z \in \mathbb{R}$ and $\tau z=z$ are equivalent. Conclude that $N z=N_{\mathbb{R}}^{A} z \stackrel{\text { def }}{=}$ $z \cdot \tau z$ is a multiplicative $\operatorname{map} A \rightarrow \mathbb{R}$.
(e) Show that $A \simeq \mathbb{R} \oplus \mathbb{R}$, and in particular that it is not a field.
(f) Assume that multiplication is defined by $(a+b i)(c+d i) \stackrel{\text { def }}{=}(a c+t b d)+(a d+b c) i$ for some fixed $t \in \mathbb{R}$. For which t is the algebra a field? Find the isomorphism class of the algebra, depending on t.

Supplement II: More on Laurent series

Definition. Let R be a ring. A formal Laurent series over R is a formal sum $f(x)=\sum_{i \geq i_{0}} a_{i} x^{i}$, in other words a function $a: \mathbb{Z} \rightarrow R$ for which there exists $i_{0} \in \mathbb{Z}$ so that $a_{i}=0$ for all $i \leq i_{0}$. We define addition and multiplication in the obvious way and write $R((x))$ for the set of Laurent series. For non-zero $f \in R((x))$ let $v(f)=\min \left\{i \mid a_{i} \neq 0\right\}$ ("order of vanishing at $0 "$; also set $\left.v(0)=\infty\right)$. Then set $|f|=q^{-v(f)}$ $(|0|=0)$ where $q>1$ is a fixed real number.
C. (Invertibility)
(a) Show that $1-x$ is invertible in $R[[x]]$.

Hint: Find a candidate series for $\frac{1}{1-x}$ and calculate the product.
(b) Show that $R[[x]]^{\times}=\left\{a+x f \mid a \in R^{\times}, f \in R[[x]]\right\}$.
(c) Show that $f \in R((x))$ is invertible iff it is non-zero and $a_{v(f)} \in R^{\times}$.
(d) Show that $F((x))$ is a field for any field F.
D. (Locality) Let F be a field.
(a) Let $I \triangleleft F[[x]]$ be a non-zero ideal. Show that $I=x^{n} F[[x]]$ for some $n \geq 1$.

Hint: Show that every nonzero $f \in F[[x]]$ can be uniquely written in the form $x^{v(f)} g(x)$ where $g \in F[[x]]^{\times}$.
(b) Show that the natural map $F[x] / x^{n} F[x] \rightarrow F[[x]] / x^{n} F[[x]]$ is an isomorphism.
E. (Completeness)
(a) Show that $v(f g)=v(f)+v(g)$, equivalently that $|f g|=|f||g|$ for all $f, g \in R((x))$.
(b) Prove the ultrametric inequality $v(f+g) \geq \min \{v(f), v(g)\} \Longleftrightarrow|f+g| \leq \max \{|f|,|g|\}$ and conclude that $d(f, g)=|f-g|$ defines a metric on f.
(c) Show that $\left\{f_{n}\right\}_{n=1}^{\infty} \subset R((x))$ is a Cauchy sequence iff there exists i_{0} such that $v\left(f_{n}\right) \geq i_{0}$ for all n, and if for each i there exists $N=N(i)$ and $r \in R$ so that for $n \geq N$ the coefficient of x^{i} in f_{n} is r.
(d) Show that $(R((x)), d)$ is complete metric space.
(e) Show that $R[[x]]$ is closed in $R((x))$.
(f) Show that $R[[x]]$ is compact iff R is finite.
F. (Ultrametric Analysis) Let $\left\{a_{n}\right\}_{n=1}^{\infty} \subset R((x))$. Show that $\sum_{n=1}^{\infty} a_{n}$ converges in $R((x))$ iff $\lim _{n \rightarrow \infty} a_{n}=$ 0.

Hint: Assume first that $a_{n} \in R[[x]]$ for all n, and for each k consider the projection of $\sum_{n=1}^{N} a_{n}$ to $R[[x]] / x^{k} R[[x]]$.
G. (The degree valuation) Let F be a field.
(a) For $f \in F[x]$ set $v_{\infty}(f)=-\operatorname{deg}(f)$ (and set $v_{\infty}(0)=\infty$). Show that $v_{\infty}(f g)=v_{\infty}(f)+v_{\infty}(g)$. Show that $v_{\infty}(f+g) \geq \min \left\{v_{\infty}(f), v_{\infty}(g)\right\}$.
(b) Extend v_{∞} to the field $F(x)$ of rational functions and show that it retains the properties above. For a rational function f you can think of $v_{\infty}(f)$ as "the order of f at ∞ ", just like $v(f)$ measures the order of f at zero.
(c) Show that the completion of $F(x)$ w.r.t. the metric coming from v_{∞} is exactly $R\left(\left(\frac{1}{x}\right)\right)$.

