Lior Silberman’s Math 501: Problem Set 2 (due 25/9/2020)

Some polynomial algebra

1. Let \(R \) be a ring, \(P \in R[x] \).
 (a) Show that \((x - y)\) divides \((x^n - y^n)\) in \(\mathbb{Z}[x,y] \), and conclude that if \(a \in R \) is such that \(P(a) = 0 \) then \((x - a)\) divides \(P(x) \) in \(R[x] \).
 (b) Suppose now that \(R \) is an integral domain and that \(\{a_i\}^k_{i=1} \subset R \) are distinct zeroes of \(P \). Show that \(\prod_{i=1}^k (x - a_i) | P \) in \(R[x] \). Give a counterexample when \(R \) has zero-divisors.

2. (The Vandermonde determinant) Let \(V_n(x_1, \ldots, x_n) \in M_n(\mathbb{Z}[x_1, \ldots, x_n]) \) be the \(n \times n \) Vandermonde matrix \((V_n)_{ij} = x_i^{j-1}\). Let \(V_n(x) = \det(V_n(x)) \in \mathbb{Z}[x_1, \ldots, x_n] \) (in other words, the entries of \(V_n \) come from the ring of polynomials in \(n \) variables, and hence its determinant is also in this ring).
 (*a) Show that there exists \(c_n \in \mathbb{Z} \) so that \(V_n(x) = c_n \prod_{i>j}(x_i - x_j) \).
 Hint: You know \(n - 1 \) zeroes of \(V_n \), thought of as an element of \((\mathbb{Z}[x_1, \ldots, x_{n-1}])[x_n] \).
 (b) Setting \(x_n = 0 \) show that \(c_n = c_{n-1} \), hence that \(c_n = 1 \) for all \(n \).
 SUPP (Lagrange interpolation) Let \(F \) be a field. Show that for any \(\{(x_i, y_i)\}^n_{i=1} \subset F^2 \) with the \(x_i \) distinct there is a unique polynomial \(p \in F[x] \) of degree at most \(n - 1 \) such that \(p(x_i) = y_i \).

Irreducible polynomials and zeroes

3. Let \(f \in \mathbb{Z}[x] \) be non-zero and let \(\frac{a}{b} \in \mathbb{Q} \) be a zero of \(f \) with \((a,b) = 1\). Show that constant coefficient of \(f \) is divisible by \(a \) and that the leading coefficient is divisible by \(b \). Conclude that if \(f \) is monic then any rational zero of \(f \) is in fact an integer.

4. Decide while the following polynomials are irreducible
 (a) \(t^4 + 1 \) over \(\mathbb{R} \).
 (b) \(t^4 + 1 \) over \(\mathbb{Q} \).
 (c) \(t^3 - 7t^2 + 3t + 3 \) over \(\mathbb{Q} \).

5. Show that \(t^4 + 15t^4 + 7 \) is reducible in \(\mathbb{Z}/3\mathbb{Z} \) but irreducible in \(\mathbb{Z}/5\mathbb{Z} \). Conclude that it is irreducible in \(\mathbb{Q}[x] \).

Derivations and differential rings

* Differential rings will be a source of some advanced examples in this course covered only in problem sets. It’s ok to skip this material.

* In a ring \(R \) for any \(n \in \mathbb{Z}_{\geq 0} \) we identify \(n = \underbrace{1_R + \cdots + 1_R}_n \) (and similarly for \(-n\)).

6. Let \(R \) be a ring, and let \(S \) be an \(R \)-algebra (a ring with a compatible structure as an \(R \)-module). A \textit{derivation} on \(S \) is an \(R \)-linear map \(\partial : S \to S \) such that \(\partial(fg) = \partial f \cdot g + f \cdot \partial g \) for all \(f, g \in S \). A \textit{differential \(R \)-algebra} is a pair \((S, \partial)\) with \(S, \partial \) as above.
 (a) Call \(f \in S \) \textit{constant} if \(\partial f = 0 \). Show that the set of constants is a subring containing the image of \(R \) in \(S \).
 (b) Show that \(\partial(f^n) = n f^{n-1} \partial f \) for positive \(n \), and also for negative \(n \) if \(f \) is invertible (hint: apply \(\partial \) to \(f^n \cdot f^{-n} = 1 \)). Conclude that if \(S \) is a field then the set of constants is a subfield, the \textit{field of constants}.
 (c) Show that for any open interval \(I \subset \mathbb{R} \), \(\frac{d}{dx} \) is a derivation on the \(\mathbb{R} \)-algebra \(C^\infty(I) \).
 (d) Show that for any ring \(R \), \(\partial(\sum_{n=0}^{\infty} a_n x^n) = \sum_{n=1}^{\infty} n a_n x^{n-1} \) defines a derivation on \(R[[x]] \), the \textit{formal derivative}. Show that if \(R \) is an integral domain then the constants of \(\partial \) are exactly the constant series \(a_0 + \sum_{n=1}^{\infty} 0 x^n \).
 SUPP Let \(\partial_1, \partial_2 \) be derivations on \(S \) and let \(\alpha \in R \). Show that \(f \mapsto \alpha \partial_1 f \) and \(f \mapsto \partial_1 \partial_2 f - \partial_2 \partial_1 f \) are derivations. This makes the set of derivations into a \textit{Lie algebra} over \(R \).
Supplementary Problems I: Review of ideals

Fix a ring R.

A. (Working with ideals)
(a) Let I be a set of ideals in R. Show that $\bigcap I$ is an ideal.
(b) Given a non-empty $S \subset R$ show that $(S) \triangleq \bigcap \{ I \mid S \subset I \triangleleft R \}$ is the smallest ideal of R containing S.
(c) Show that $(S) = \{ \sum_{i=1}^{n} r_i s_i \mid n \geq 0, r_i \in R, s_i \in S \}$.
(d) Let $a \in R^\times$. Show that a is not contained in any proper ideal.
 \textit{Hint:} Show that $a \in I$ implies $1 \in I$.

B. (Prime and maximal ideals) Call $I \triangleleft R$ \textit{prime} if whenever $a, b \in R$ satisfy $ab \in I$, we have $a \in I$ or $b \in I$.
Call I \textit{maximal} if it is not contained in any proper ideal of R.
(a) Show that R is an integral domain iff $(0) = \{0\} \triangleleft R$ is prime.
(b) Show that $I \triangleleft R$ is prime iff R/I is an integral domain.
(c) Show that R is a field iff (0) is its unique ideal (equivalently, a maximal ideal).
(d) Use the correspondence theorem to show that I is maximal iff R/I is a field.
(e) Show that every maximal ideal is prime.
 \textit{Hint:} Every field is an integral domain.