Lior Silberman's Math 501: Problem Set 2 (due 25/9/2020)

Some polynomial algebra

- 1. Let R be a ring, $P \in R[x]$.
 - (a) Show that (x-y) divides (x^n-y^n) in $\mathbb{Z}[x,y]$, and conclude that if $a \in R$ is such that P(a) = 0 then (x-a)|P in R[x].
 - (b) Suppose now that R is an integral domain and that $\{a_i\}_{i=1}^k \subset R$ are distinct zeroes of P. Show that $\prod_{i=1}^{k} (x-a_i) | P$ in R[x]. Give a counterexample when R has zero-divisors.
- 2.(The Vandermonde determinant) Let $\mathcal{V}_n(x_1,\ldots,x_n) \in M_n(\mathbb{Z}[x_1,\ldots,x_n])$ be the $n \times n$ Vandermonde matrix $(\mathcal{V}_n)_{ij} = x_i^{j-1}$. Let $V_n(\underline{x}) = \det(\mathcal{V}_n(\underline{x})) \in \mathbb{Z}[x_1, \ldots, x_n]$ (in other words, the entries of \mathcal{V}_n come from the ring of polynomials in n variables, and hence its determinant is also in this ring).
 - (*a) Show that there exists $c_n \in \mathbb{Z}$ so that $V_n(\underline{x}) = c_n \prod_{i>i} (x_i x_i)$.

Hint: You know n-1 zeroes of V_n , thought of as an element of $(\mathbb{Z}[x_1,\ldots,x_{n-1}])[x_n]$.

- (b) Setting $x_n = 0$ show that $c_n = c_{n-1}$, hence that $c_n = 1$ for all n.
- SUPP (Lagrange interpolation) Let F be a field. Show that for any $\{(x_i, y_i)\}_{i=1}^n \subset F^2$ with the x_i distinct there is a unique polynomial $p \in F[x]$ of degree at most n-1 such that $p(x_i) = y_i$.

Irreducible polynomials and zeroes

- 3. Let $f \in \mathbb{Z}[x]$ be non-zero and let $\frac{a}{b} \in \mathbb{Q}$ be a zero of f with (a, b) = 1. Show that constant coefficient of f is divisible by a and that the leading coefficient is divisible by b. Conclude that if f is monic then any rational zero of f is in fact an integer.
- Decide while the following polynomials are irreducible 4.
 - (a) $t^4 + 1$ over \mathbb{R} .
 - (b) $t^4 + 1$ over \mathbb{Q} .
 - (c) $t^3 7t^2 + 3t + 3$ over \mathbb{O} .
- 5. Show that $t^4 + 15t^3 + 7$ is reducible in $\mathbb{Z}/3\mathbb{Z}$ but irreducible in $\mathbb{Z}/5\mathbb{Z}$. Conclude that it is irreducible in $\mathbb{Q}[x].$

Derivations and differential rings

- Differential rings will be a source of some advanced examples in this course covered only in problem sets. It's ok to skip this material.
- In a ring R for any $n \in \mathbb{Z}_{\geq 0}$ we identify $n = \overbrace{1_R + \cdots + 1_R}^n$ (and similarly for -n).
- 6. Let R be a ring, and let S be an R-algebra (a ring with a compatible structure as an R-module). A derivation on S is an R-linear map $\partial: S \to S$ such that $\partial(fg) = \partial f \cdot g + f \cdot \partial g$ for all $f, g \in S$. A differential R-algebra is a pair (S, ∂) with S, ∂ as above.
 - (a) Call $f \in S$ constant if $\partial f = 0$. Show that the set of constants is a subring containing the image of R in S.
 - (b) Show that $\partial(f^n) = nf^{n-1}\partial f$ for positive n, and also for negative n if f is invertible (hint: apply ∂ to $f^n \cdot f^{-n} = 1$). Conclude that if S is a field then the set of constants is a subfield, the *field of* constants.

 - (c) Show that for any open interval I ⊂ ℝ, d/dx is a derivation on the ℝ-algebra C[∞](I).
 (d) Show that for any ring R, ∂ (∑_{n=0}[∞] a_nxⁿ) def ∑_{n=1}[∞] na_nxⁿ⁻¹ defines a derivation on R[[x]], the formal derivative. Show that if R is an integral domain then the constants of ∂ are exactly the constant series $a_0 + \sum_{n=1}^{\infty} 0x^n$.
 - SUPP Let ∂_1, ∂_2 be derivations on S and let $\alpha \in R$. Show that $f \mapsto \alpha \partial_1 f$ and $f \mapsto \partial_1 \partial_2 f \partial_2 \partial_1 f$ are derivations. This makes the set of derivations into a *Lie algebra* over *R*.

Supplementary Problems I: Review of ideals

Fix a ring R.

- A. (Working with ideals)
 - (a) Let \mathcal{I} be a set of ideals in R. Show that $\bigcap \mathcal{I}$ is an ideal.
 - (b) Given a non-empty $S \subset R$ show that $(S) \stackrel{\text{def}}{=} \bigcap \{I \mid S \subset I \triangleleft R\}$ is the smallest ideal of R containing S.
 - (c) Show that $(S) = \{\sum_{i=1}^{n} r_i s_i \mid n \ge 0, r_i \in R, s_i \in S\}.$
 - (d) Let $a \in R^{\times}$. Show that a is not contained in any proper ideal. *Hint*: Show that $a \in I$ implies $1 \in I$.
- B. (Prime and maximal ideals) Call $I \triangleleft R$ prime if whenever $a, b \in R$ satisfy $ab \in I$, we have $a \in I$ or $b \in I$. Call I maximal if it is not contained in any proper ideal of R.
 - (a) Show that R is an integral domain iff $(0) = \{0\} \triangleleft R$ is prime.
 - (b) Show that $I \triangleleft R$ is prime iff R/I is an integral domain.
 - (c) Show that R is a field iff (0) is its unique ideal (equivalently, a maximal ideal).
 - (d) Use the correspondence theorem to show that I is maximal iff R/I is a field.
 - (e) Show that every maximal ideal is prime. *Hint:* Every field is an integral domain.