
Lior Silberman’s Math 501: Problem Set 1 (due 18/9/2020)

Practice problems, any sub-parts marked “OPT” (optional) and supplementary problems are not for
submission. RMK are remarks. Starred problems are more difficult.

Review of group theory
1. (Cyclic groups)

(a) Which groups have no non-trivial proper subgroups?
(b) Show that the infinite cyclic group Z is the unique group which has non-trivial proper subgroups

and is isomorphic to all of them.

2. (Groups with many involutions) Let G be a finite group, and let I =
{
g ∈ G | g2 = e

}
\{e} be its subset

of involutions (e is the identity element of G).
(a) Show that G is abelian if it has exponent 2, that is if G = I ∪ {e}.
(**b) Show that G is abelian if |I| ≥ 3

4 |G|.

3. Fix a set X. The support of a permutation σ ∈ SX is the set supp(σ) = {x ∈ X | σ(x) 6= x}.
(a) Let FX ⊂ SX be the set of permutations of finite support. Show that FX is a normal subgroup.
(b) Show that FX is generated by transpositions, and that there is a homomorphism sgn: FX → {±1}

taking the value −1 on all transpositions. Write AX for its kernel.
(*c) Suppose X is infinite. Show that AX is a simple group. You may use the fact that An are simple

for n ≥ 5.

Composition series and solvable groups
4. Find a group which has no composition series.

5. Show that every group of order p2q2 is solvable.

6. Let R be a ring. Let G = GLn(R) be the group of invertible n × n matrices with entries in R, let
B < G be the subgroup of upper-triangular matrices, N < B the subgroup of matrices with 1s on the
diagonal. Next, for 0 ≤ j ≤ n− 1 write Nj for the matrices with 1s on the main diagonal and 0s on the

next j diagonals. When n = 4 we have: N = N0 =




1 ∗ ∗ ∗
1 ∗ ∗

1 ∗
1


, N1 =




1 0 ∗ ∗
1 0 ∗

1 0
1


,

N2 =




1 0 0 ∗
1 0 0

1 0
1


.

(a) Show that N CB and that B/N ' (R×)n (direct product of n copies).
(b) For each 0 ≤ j < n−1, Nj+1CNj and Nj/Nj+1 ' Rn−j−1 (direct products of copies of the additive

group of R).
(c) Conclude that B is solvable.
RMK When F is a field (and even more generally) B is a maximal solvable subgroup of G.

7. (The derived series) Fix a group G and recall that its derived series is defined by G(0) = G and
G(i+1) =

[
G(i), G(i)

]
=
(
G(i)

)′
.

(a) Suppose G(k) = {e} for some k. Show that G is solvable.
(b) Suppose that GkCGk−1C· · ·CG0 = G (note that we don’t require Gk = {e}) and that the quotients

Gi/Gi+1 are all abelian. Show that Gi ⊃ G(i) for all 0 ≤ i ≤ k.
(c) Conclude that G is solvable iff G(k) = {e} for some k.
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SUPP A subgroup H < G is characteristic if for any automorphism α ∈ Aut(G) we have α(H) = H. Write
H chr G.
(a) Show that characteristic subgroups are normal.
(b) Suppose K chr H chr G. Show K chr G.
(c) Show that the center Z(G) and the G(i) are characteristic subgroups.
(d) Suppose K chr H CG. Show that K CG.

Supplementary Problems I: More examples of groups

Definition. Let F be a field, V an F -vectorspace. An affine combination in V is a sum
∑n
i=1 tivi

where ti ∈ F , vi ∈ V and
∑n
i=1 ti = 1. If V,W are vector spaces then a map f : V → W is called an affine

map if for every affine combination in V we have

f

(
n∑
i=1

tivi

)
=

n∑
i=1

tif (vi) .

A. (The affine group) Let U, V,W be vector spaces over F , f : U → V , g : V →W affine maps.
(a) Show that g ◦ f : U →W is affine.
(b) Assume that f is bijective. Show that its set-theoretic inverse f−1 : V → U is an affine map as well.
(c) Let Aff(V ) denote the set of invertible affine maps from V to V . Show that Aff(V ) is a group, and

that it has a natural action on V .
(d) Assume that f(0U ) = 0V . Show that f is a linear map.

B. (Elements of the affine group)
(a) Given a ∈ V show that Tax = x+ a (“translation by a”) is an affine map.
(b) Show that the map a 7→ Ta is a group homomorphism from the additive group of V to Aff(V ). Write

T(V ) for the image.
(c) Show that T(V ) acts transitively on V . Show that the action is simple: for any x ∈ V , StabT(V )(x) ={

T0
}
.

(d) Fixing a basepoint 0 ∈ V , show that every A ∈ Aff(V ) can be uniquely written in the form A = TaB
where a ∈ V and B ∈ GL(V ). Conclude that Aff(V ) = T(V ) ·GL(V ) setwise.

(e) Show that T(V ) ∩GL(V ) = {1} and that T(V ) is a normal subgroup of Aff(V ). Show that Aff(V )
is isomorphic to the semidirect product GL(V ) n (V,+).

C. Let k be field, V a vector space over k of dimension n. A maximal flag F in V is a sequence {0} = F0 (
F1 ⊆ · · · ( Fn = V of subspaces. Let F(V ) denote the space of maximal flags in V .
(a) Show that the group GL(V ) of all invertible k-linear maps V → V acts transitively on F(V ).
(b) Let F ∈ F(V ) and letB < GL(V ) be its stabilizer. LetN = {b ∈ B | ∀j ≥ 1∀v ∈ Fj : bv − v ∈ Fj−1}.

Show that N is a normal subgroup of B.
(c) Show that B/N ' (k×)n.
(d) Show that if V = kn and Fi ⊂ kn are the vectors supported on the first i coordinates (the “standard

flag”) then the groups B,N coincide with those of exercise 6.

D. Suppose now that k is a finite field with q elements, where q = pr for a prime p.
(a) What is |F(V )|? Hint : For each one-dimensional subspace W ⊂ V show that the set of flags

containing W is in bijection with the set of flags F(V/W ).
(b) Show that q is relatively prime to |F(V )|. Conclude that B contains a Sylow p-subgroup of G.
(c) Show that N is a Sylow p-subgroup of B, hence of G.
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Supplementary Problems II: More examples of rings
E. Let R be a ring.

DEF A formal power series over R is a formal expression
∑∞
n=0 anx

n where an ∈ R (equivalently, it’s
just an infinite sequence {an}∞n=0 ⊂ R). We define addition and multiplication of power series in the
obvious way. Write R[[x]] for the set of power series over R in the variable x.

(a) Verify that R[[x]] is a ring.
(b) Show that f ∈ R[[x]] is invertible in R[[x]] if and only if its constant coefficient a0 is invertible in R.
DEF A formal Laurent series over R is a formal expression

∑∞
n=N anx

n where N ∈ Zand an ∈ R (up
to initial zeroes: 0

x2 + 0
x + 1 + x2 = 1 + x2). Denote the set of such series R((x)).

(c) Show that the set of formal Laurent series is also a ring.
(d) Show that f ∈ R((x)) is invertible if and only if its first non-zero coefficient is invertible. Conclude

that if R is a field then so is R((x)).

F. (The topology of R[[x]])
(a) Given f ∈ R[[x]] and N ≥ 0 let U(f,N) be the set of all g ∈ R[[x]] whose first N coefficients agree

with those of f . Show that for any f, f ′, N,N ′ the intersection of U(f,N) and U(f ′, N ′) is either
empty of equal to one of them. Conclude that U(f,N) is a basis for a topology on R[[x]].

(b) Show that the ring operations in R[[x]] are continuous in this topology.
(c) Let f ∈ R[[x]] have zero constant coefficient. Show that the series 1 + f + f2 + f3 + · · · converges in

R[[x]] (in other words, the partial sums converge in the above topology) and that its sum is inverse
to 1− f .

(d) Use (c) to give an alternative proof of problem A(b).

G. Let I ⊂ R be an open interval. Write C∞(I) for the set of functions f : I → R which are differentiable
to all orders.
(a) A constant-coefficient differential operator is an expression of the form

∑n
α=0 aα

dα

dxα where aα ∈ R.
Show that the set of all constant coefficient differential operators is a subring of EndR (C∞(I)) which
is isomorphic to the polynomial ring R[x].

(b) A variable-coefficient differential operator is an expression of the form
∑n
α=0 aα(x) dα

dxα where aα ∈
C∞(I). Show that the set of all variable-coefficient differential operators is a non-commutative
subring of EndR (C∞(I)).

OPT Generalize these results to higher dimensions, replacing the interval I with a general open subset
Ω ⊂ Rn.

RMK In PDE it is useful to think of C∞(Ω) as a module over the ring of differential operators. In both
PDE and differential operators it is useful to think of the ring of differential operators as a module
over C∞(Ω)! (multiply the operator by a function).
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