Arithmetic functions

1. (A Mersenne prime)
 (a) Let p, q be primes such that $q | 2^p - 1$. Show that $q \equiv 1 \pmod{p}$.
 \textit{Hint:} Consider the order of 2 mod q.
 (b) Show that if p is odd then in fact $q \equiv 1 \pmod{2^p}$.
 \textit{Hint:} $q - 1$ is even.
 (*c) Prove that $n = 2^{13} - 1$ is prime by (i) Showing that if n were composite, it would be divisible by at least one of two specific primes and (ii) Explicitly dividing it with remainder by those primes to rule them out.

2. (a) Show that $f(n) = 2^\omega(n)$ is a multiplicative function.
 \textit{Hint:} Adapt the argument that proved that μ was multiplicative.
 (b) Show that $\sum_{d|n} f(d) = \tau(n^2)$.
 \textit{Hint:} First show that it is enough to check when n is a prime power, then do that case.
 SUPP What would happen for $f(d) = b^\omega(n)$ for a general $b \in \mathbb{Z}_{\geq 2}$?

*3. Show that $\Lambda \ast I = \log$.
\textit{Hint:} The Use the prime factorization of the integer under consideration.

4. Define a function $\chi_4(n) = \begin{cases} 1 & n \equiv 1 \pmod{4} \\ -1 & n \equiv 3 \pmod{4} \\ 0 & 2|n \end{cases}$ and set $s(n) = \sum_{d|n} \chi_4(d)$.
 (a) Show that χ_4 is completely multiplicative and conclude that s is multiplicative.
 (b) Calculate $s(2), s(3), s(4), s(5)$.
 (c) Let $r_2(n) = \# \{ (a, b) \in \mathbb{Z}^2 \mid a^2 + b^2 = n \}$ be the number of ways to write n as a sum of two squares of integers (possibly negative!). Show that $r_2(n) = 4s(n)$ for $n = 2, 3, 4, 5$.
 RMK The identity $r_2(n) = 4s(n)$ holds for all n.

Cryptology

5. The following message has been encoded using an affine cipher. Decode it and explain your reasoning.

NMCWT FIHHI ACPBN RSWHI NRUNG VSWBI BAUFS CPBAI YTHSI PNRSM
CTSCH HYIYW UMSFS NRSTG FGAGV SWCPB NRSYG YSFCN RWGEN AFCTS
(Hint 1: the average frequency of letters in English falls according to ETAOIN)

6. Show that in the following two affine ciphers encryption and decryption are the same operation (that is, that $E(E(P)) = P$)
 (a) “ROT-13”, a popular cipher for internet discussion boards, for which the encryption function is $E(P) \equiv P + 13 \pmod{26}$.
 (b) “Atbash”, a historical cipher originally used in Hebrew, consisting of exchanging letters: $a \leftrightarrow z$, $b \leftrightarrow y$, $c \leftrightarrow x$ and so on. Its encryption function is $E(P) \equiv -1 - P \pmod{26}$.
7. In this problem your will do an RSA decryption when the public key is \((e = 5, m = 2881)\).
 (a) Calculate \(\phi(m)\) and find the decryption exponent \(d\).
 (b) If the ciphertext is 0504 1874 0347 0515 2088 2356 0736 0468, what was the plaintext?
 (decrypt each four-digit number separately).
 (c) Interpret each resulting four-digit number as a pair of letters. What was the message?

Supplementary problems (not for submission)

A. Fix a prime \(p\).
 (a) Let \(f(x) = \sum_{i=0}^{n} a_i x^i\) be a polynomial with integer coefficients. Use the identity of PS2 problem 8 to show that \(x - y\) divides \(f(x) - f(y)\) as polynomials.
 (b) Let \(c_1 \in \mathbb{Z}\) be such that \(f(c_1) \equiv 0\) (\(p\)). Plugging in \(c_1\) for \(y\) show that for some polynomial \(g(x)\) with integer coefficients we have a congruence of polynomials \(f(x) \equiv (x - c_1)g(x)\) (\(p\)). Moreover, \(\deg(g) \leq \deg(f) - 1\).
 (c) Let \(c_2 \in \mathbb{Z}\) also be such that \(f(c_2) \equiv 0\) (\(p\)) and assume that \(c_1 \neq c_2\) (\(p\)). Show that \(g(c_2) \equiv 0\) (\(p\)).
 (d) Show by induction on \(r\) that \(\{c_j\}_{j=1}^{r}\) are representatives of the distinct congruence classes mod \(p\) which solve the equation \(f(x) \equiv 0\) (\(p\)) then there is a polynomial \(g(x)\) of degree \(\leq n - r\) such that \(f(x) \equiv g(x) \prod_{j=1}^{r} (x - c_j)\).
 (e) Show that if \(f\) is not zero mod \(p\) then has at most \(n\) distinct roots mod \(p\).

B. Let \(f\) be an arithmetical function.
 (a) Show that \(f\) is invertible (there is \(g\) such that \(f \ast g = \delta\)) iff \(f(1) \neq 0\).
 (b) Let \(f\) be invertible. Show that it has a unique inverse and that \((f^{-1})^{-1} = f\).
 (c) Let \(f\) be invertible and multiplicative. Show that \(f^{-1}\) is multiplicative.
Lior Silberman’s Math 312: Solutions to Problem Set 5

Arithmetic functions

1. (a) We have seen in class that \(p \mid q - 1 \). Clearly \(2^p - 1 \) and hence \(q \) are odd, so \(q - 1 \) is even. We thus know that \(2, p \) both divide \(q - 1 \). Since \(2, p \) are relatively prime their product also divides \(p - 1 \).

(b) We have \(2^{13} - 1 = 154 \cdot 53 + 29 = 103 \cdot 79 + 54 \). If \(2^{13} - 1 \) were not prime, it would have a proper prime divisor \(q \leq \sqrt{2^{13} - 1} < \sqrt{100,000} = 100 \) which by part (a) would satisfy \(q \equiv 1 \pmod{26} \). The numbers up to 100 which satisfy this congruence are 1, 27, 53, 79, of which 1, 27, 127 are not prime, so that putative prime divisor would have to be one of 53, 79.

2. (a) We check that \(\omega \) is an additive function: let \(m, n \) be two integers. Certainly every prime dividing one of \(m, n \) divides \(mn \) and conversely if \(p \) divides \(mn \) is divides one of \(m, n \). It follows that the set of primes dividing \(m, n \) is the union of the sets of primes dividing \(m, n \). Finally, if \(\langle m, n \rangle = 1 \) then the sets of primes dividing \(m, n \) are disjoint (any prime lying in the intersection would be a common divisor). Since the size of a disjoint union is the sum of the sizes, we have \(\omega(mn) = \omega(m) + \omega(n) \) in this case, and thus \(2^{\omega(mn)} = 2^{\omega(m) + \omega(n)} = 2^{\omega(m)}2^{\omega(n)} \).

(b) Set \(g = f \ast I \) and let \(h(n) = \tau(n^2) \). \(g \) is multiplicative as the convolution of two multiplicative functions. \(h \) is also multiplicative: if \(\langle m, n \rangle = 1 \) then \((m^2, n^2) = 1 \) also (exactly the same primes divide the two integers \(m, m^2 \), and then \(h(mn) = \tau(m^2n^2) = \tau(m^2)\tau(n^2) = h(m)h(n) \) by the multiplicativity of \(\tau \). We have seen in class that two multiplicative functions are equal iff the are equal at prime powers, so it remains to evaluate \(g, h \) at integers of the form \(p^k \), \(p \) prime. In that case \(g(p^k) = \sum_{d \mid p^k} f(p^k) = \sum_{j=0}^k f(p^j) = 2^{\omega(1)} + \sum_{j=1}^k 2^{\omega(p^j)} = 1 + 2k \) since \(\omega(p^j) \) if \(j \geq 1 \), while \(h(p^k) = \tau(p^{2k}) = 2k + 1 \) (we have seen in class that \(\tau(p^n) = r + 1 \)).

SUPP If \(f(n) = b^{\omega(n)} \) then \((f \ast I)(n) = \tau(n^b) \).

3. Let \(n = \prod_{i=1}^r p_i^{k_i} \) where the \(p_i \) are the distinct prime divisors of \(n \). If a divisor \(d \mid n \) is a prime power then it is a power of one of the \(p_i \), so \(d \mid n \) is a prime power iff \(d = p_i^{r_i} \) for some \(1 \leq i \leq r \) and some \(1 \leq k \leq k_i \). It follows that

\[
\sum_{d \mid n} \Lambda(d) = \sum_{i=1}^r \sum_{k=1}^{k_i} \Lambda(p_i^k) = \sum_{i=1}^r \sum_{k=1}^{k_i} \log p_i = \sum_{i=1}^r k_i \log p_i = \log \left(\prod_{i=1}^r p_i^{k_i} \right) = \log n.
\]

4. (a) Let \(n, m \) be non-zero integers. If at least one of them is even so is \(nm \) and hence both \(\chi_4(nm) \) and \(\chi_4(n)\chi_4(m) \) vanish. Otherwise, by the division theorem we can write \(n = 4k + \varepsilon \) and \(m = 4l + \delta \) for some \(\varepsilon, \delta \in \{\pm1\} \). By definition of \(\chi_4 \) we then have \(\chi_4(n) = \varepsilon, \chi_4(m) = \delta \) and \(\chi_4(nm) = \chi_4(4(kl + \varepsilon l + \delta k) + \varepsilon \delta) = \varepsilon \delta = \chi_4(n)\chi_4(m) \). \(s \) is then multiplicative as the convolution of two multiplicative functions.

(b) \(s(2) = \chi_4(1) + \chi_4(2) = 1, s(3) = \chi_4(1) + \chi_4(3) = 1 - 1 = 0, s(4) = \chi_4(1) = 1, s(5) = \chi_4(1) + \chi_4(5) = 1 + 1 = 2 \).

(c) The only way to write 2 as a sum of two positive squares is \(2 = 1 + 1 \) so if \(2 = a^2 + b^2 \) we have \(a, b \in \{\pm1\} \). There are 4 sign choices so \(r_2(2) = 4 = 4s(2) \). Since \(1 + 1 < 3 < 4 \) cannot be written as a sum of two squares, and 4 can only be written as a sum of two positive squares via \(4 = 4 + 0 \). We can then choose which of \(a, b \) vanishes, and we can choose the sign of the other (one of \(\pm2 \)), so \(r_2(4) = 4 \). Finally, the only way to write 5 as