Lior Silberman's Math 312: Problem Set 2

Prime factorization

- 1. Let $a, b \in \mathbb{Z}$ (not both zero) and let $d = \gcd(a, b)$. We show that $\gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$ in two ways: (a) Use Bezout's Theorem to show that there are x, y such that $\frac{a}{d}x + \frac{b}{d}y = 1$ and conclude that
 - (a) Use Bezout's Theorem to show that there are x, y such that $\frac{d}{d}x + \frac{d}{d}y = 1$ and conclude that $gcd(\frac{a}{d}, \frac{b}{d}) \mid 1.$
 - (b) Express $d, \frac{a}{d}, \frac{b}{d}$ using the prime factorizations of a, b and show that $\frac{a}{d}, \frac{b}{d}$ have no common prime divisor.
- 2. Let (a,c) = 1. Show that (a,bc) = (a,b). *Hint:* Either method of problem 1 works.
- 3. Consider the equation $2^x + 1 = z^2$ for unknown $x, z \in \mathbb{Z}_{>0}$.
 - (a) Show that z + 1 and z 1 both divide 2^x . *Hint:* rearrange the equation.
 - (b) Show that z + 1 and z 1 are both powers of 2.
 - (c) Which powers of 2 differ by 2? Use that to solve the equation.
- 4. Now find all solutions to $1 + 3^y = z^2$ where $y, z \in \mathbb{Z}_{\geq 0}$. *Hint*: Which powers of 3 differ by 2?
- 5. We now combine both equations: let $x, y, z \in \mathbb{Z}_{\geq 0}$ solve $2^x + 3^y = z^2$. We assume both x, y > 0 (the cases y = 0 or x = 0 are problems 3,4), and we also assume that both x, y are *even*.
 - (a) Show that z 2^{x/2} = 1. *Hint*: If 3 divides both z - 2^{x/2} and z + 2^{x/2} it would divide their difference.
 (b) Continuing (a), show that 3^y = 2^{1+x/2} + 1 and find all solutions to this equation.
 - (b) Continuing (a), show that $3^y = 2^{1+x/2} + 1$ and find all solutions to this equation. *Hint*: Both $3^{y/2} \pm 1$ must be powers of 2.

RMK We will show in future problem sets that if (x, y, z) is a solution to the equation above and x, y are positive then x, y are even.

Euclid's Algorithm

- 6. Let $a \ge b \ge 0$.
 - (a) Show that $(2^{a} 1, 2^{b} 1) = (2^{a-b} 1, 2^{b} 1)$. *Hint*: Euclid's Lemma + problem 2.
 - (b) Show that $(2^a 1, 2^b 1) = 2^{(a,b)} 1$. *Hint*: Euclid's algorithm
 - (c) Show that $(x^a 1, x^b 1) = x^{(a,b)} 1$ for all $a \ge b \ge 0$ and all $x \ge 2$.

Primes

For the next two problems use the identities

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{k} y^{n-1-k}$$
$$x^{2m+1} + y^{2m+1} = (x + y) \sum_{k=0}^{2m} (-1)^{k} x^{k} y^{2m-k}.$$

- 7. Let *a*, *n* be integers with $a \ge 1$, $n \ge 2$ such that $a^n 1$ is prime.
 - (a) Show that a = 2.
 - (b) Show that *n* is prime.*Hint:* This follows from 6(b) or from the identities above.
- 8. Let a, b, n be positive integers (ab > 1) such that $a^n + b^n$ is prime. Show that n is a power of 2. *Hint*: Try ruling out n = 6 before tackling the general case.
- 9. (Primes of the form 4k + 3)
 - (a) Show that odd numbers have remainder either 1 or 3 when divided by 4.
 - (b) Let *a*, *b* have remainder 1 when divided by 4. Show that *ab* has the same reminder. *Hint*: Write a = 4k + 1, $b = 4\ell + 1$ and multiply.
 - (c) Suppose *a* leaves reminder 3 when divided by 4. Show that *a* is divisible by a prime with the same property.
 - (d) Let *P* be a non-empty set of primes, and let $n = \prod_{p \in P} p$ be their product. Show that no $p \in P$ divides 4n 1.
 - (e) Show that there are infinitely many primes of the form p = 4k + 3.

Supplementary problems (not for submission)

- A. (A counting proof of the infinitude of primes)
 - (a) In the factorization $n = \prod_p p^{e_p}$ show that $e_p \le \log_2 n$.
 - (b) Assume that $\pi(x)$ primes which are at most *x*. Show that there are at most $(1 + \log_2 x)^{\pi(x)}$ integers between 1 and *x*.
 - (c) There are at least x integers between 1 and x. Conclude that there is a constant C (independent of x) so that

$$\pi(x) \ge C \frac{\log_2 x}{\log_2 \log_2 x}.$$

B. (unrelated) Let $n = \prod_p p^{e_p} \ge 1$. Show that *n* has $\tau(n) = \prod_p (e_p + 1)$ positive divisors.