Lior Silberman's Math 312: ComPAIR Assignment 5

- This assignment is due Wednesday, $7 / 4 / 2021$ at noon (Vancover time)
- Comparisons are due Sunday, $11 / 4 / 2021$ at 11 pm (Vancouver time).

Recall that for a modulus m each integer a is congruent to a unique reduced residue mod m (an integer in the range $[0, m-1]$ and if m is odd also to a unique balanced residue (an integer in the range $\left[-\frac{m-1}{2}, \frac{m-1}{2}\right]$ (if m is even we can use the range $\left[-\frac{m}{2}+1, \frac{m}{2}\right]$ or $\left[-\frac{m}{2}, \frac{m}{2}-1\right]$.

1. Let p be an odd prime.
(a) Give a formula for s depending on p.

$$
\begin{aligned}
s & =\#\left\{\left.1 \leq t \leq \frac{p-1}{2} \right\rvert\, \text { the reduced residue of }-t \text { is between }\left[\frac{p+1}{2}, p-1\right]\right\} \\
& =\#\left\{\left.1 \leq t \leq \frac{p-1}{2} \right\rvert\, \text { the balanced residue of }-t \text { is between }\left[-\frac{p-1}{2},-1\right]\right\}
\end{aligned}
$$

(b) Use Gauss's Lemma to conclude that $\left(\frac{-1}{p}\right)=\left\{\begin{array}{ll}+1 & p \equiv 1(4) \\ -1 & p \equiv 3(4)\end{array}\right.$.
2. Let p be an odd prime.
(a) Give a formula for s depending on p.

$$
\begin{aligned}
s & =\#\left\{\left.1 \leq t \leq \frac{p-1}{2} \right\rvert\, \text { the reduced residue of } 2 t \text { is between }\left[\frac{p+1}{2}, p-1\right]\right\} \\
& =\#\left\{\left.1 \leq t \leq \frac{p-1}{2} \right\rvert\, \text { the balanced residue of } 2 t \text { is between }\left[-\frac{p-1}{2},-1\right]\right\}
\end{aligned}
$$

(b) Use Gauss's Lemma to conclude that $\left(\frac{2}{p}\right)= \begin{cases}+1 & p \equiv \pm 1(8) \\ -1 & p \equiv \pm 3(8)\end{cases}$

For parts (a), the key ideas are (1) edge cases for t (for each range of consecutive t where the claim holds, what are the endpoints? and (2) In part 2(a) division into cases for p : the formula for the edge case might depend on the class of $p \bmod 8$.

