Lior Silberman's Math 312: ComPAIR Assignment 4

- This assignment is due Wednesday, 17/3/2021 at noon (Vancover time)
- Comparisons are due Sunday, 21/3/2021 at 11pm (Vancouver time).
- 1. (Inverses of multiplicative function)
 - (a) Let f, g be non-zero multiplicative functions such that $f(p^k) = g(p^k)$ for all primes p and all $k \ge 1$. Show that f(n) = g(n) for all n.
 - (b) Let f be a multiplicative function such that f(1) = 1, and let p be a prime. Show how to recursively define values $\bar{f}(1), \bar{f}(p), \ldots, \bar{f}(p^r), \ldots$ so that $(f * \bar{f})(p^k) = \begin{cases} 1 & k = 0 \\ 0 & k > 0 \end{cases}$.
 - RMK A recursive formula is the computational analogue of an induction: first determine $\bar{f}(1)$. Then for each $r \ge 1$ you need to give a formula for $\bar{f}(p^r)$ in terms of values of f (which is a given in this
 - problem) and the previous values f(1),..., f(p^{r-1}).
 (c) In the case where f = I (that is f(n) = 1 for all n), the inverse is called μ. Apply the recursive formula of part (b) to determine the values μ(p^k) for all k.
 - (d) Continuing part (b), define a multiplicative function by $\bar{f}\left(\prod_p p^{e_p}\right) = \prod_p \bar{f}(p^{e_p})$. Show it's still true that $(f * \bar{f})(p^k) = \delta(p^k)$ for each prime p and prime power k.
 - (e) In the case f = I show that the reusling function agrees with the Möbius function defined in lecture.
 - (f) Continuing part (d), show that $f * \overline{f} = \delta$ (hint: first show that both sides are multiplicative).