Lior Silberman's Math 312: ComPAIR Assignment 4

- This assignment is due Wednesday, $17 / 3 / 2021$ at noon (Vancover time)
- Comparisons are due Sunday, 21/3/2021 at 11pm (Vancouver time).

1. (Inverses of multiplicative function)
(a) Let f, g be non-zero multiplicative functions such that $f\left(p^{k}\right)=g\left(p^{k}\right)$ for all primes p and all $k \geq 1$. Show that $f(n)=g(n)$ for all n.
(b) Let f be a multiplicative function such that $f(1)=1$, and let p be a prime. Show how to recursively define values $\bar{f}(1), \bar{f}(p), \ldots, \bar{f}\left(p^{r}\right), \ldots$ so that $(f * \bar{f})\left(p^{k}\right)=\left\{\begin{array}{ll}1 & k=0 \\ 0 & k>0\end{array}\right.$.
RMK A recursive formula is the computational analogue of an indutcion: first determine $\bar{f}(1)$. Then for each $r \geq 1$ you need to give a formula for $\bar{f}\left(p^{r}\right)$ in terms of values of f (which is a given in this problem) and the previous values $\bar{f}(1), \ldots, \bar{f}\left(p^{r-1}\right)$.
(c) In the case where $f=I$ (that is $f(n)=1$ for all n), the inverse is called μ. Apply the recursive formula of part (b) to determine the values $\mu\left(p^{k}\right)$ for all k.
(d) Continuing part (b), define a multiplicative function by $\bar{f}\left(\prod_{p} p^{e_{p}}\right)=\prod_{p} \bar{f}\left(p^{e_{p}}\right)$. Show it's still true that $(f * \bar{f})\left(p^{k}\right)=\delta\left(p^{k}\right)$ for each prime p and prime power k.
(e) In the case $f=I$ show that the reuslting funciton agrees with the Möbius function defined in lecture.
(f) Continuing part (d), show that $f * \bar{f}=\delta$ (hint: first show that both sides are multiplicative).
