
Lior Silberman’s Math 312: ComPAIR Assignment 3

• This assignment is due Wednesday, 3/3/2021 at noon (Vancover time)
• Comparisons are due Sunday, 7/3/2021 at 11pm (Vancouver time).

1. (pth powers are funny mod p) Fix a prime number p.
(a) (“Binominal formula”) Prove by induction on n ≥ 0 that (x+ y)
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(b) Let p be a prime number and let 0 < k < p. Show that p |
(
p
k

)
.

(c) Show that (x+ y)p ≡ xp + yp (p).
(d) (Fermat’s Little Theorem) prove by induction on a that ap ≡ a (p).
RMK In class we showed that ap−1 ≡ a if a is invertible mod p, which can be deduced from part (d) by

multiplying by ā.

2. Let M = m1 · · ·mr where the mi are pairwise relatively prime.
(a) Suppose a is invertible mod M . Show that a is invertible mod each mi (hint: you need an inverse

...).
(b) Suppose ai is invertible mod each mi, and let a mod M be such that a ≡ ai (mi) for all i as in the

CRT. Show that a is invertible mod M .
(c) Let φ(M) be the number of invertible residue classes mod M . Show that φ(M) =

∏r
i=1 φ(mi).
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