Lior Silberman's Math 223: Problem Set 12 (due 14/4/2021)

Practice problems

Section 6.2

Cauchy–Schwarz

SUPP Use induction on *n* to establish *Lagrange's identity*: for all $\underline{a}, \underline{b} \in \mathbb{R}^n$:

$$\|\underline{a}\|^2 \|\underline{b}\|^2 - (\langle \underline{a}, \underline{b} \rangle)^2 = \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right) - \left(\sum_{i=1}^n a_i b_i\right)^2 = \sum_{1 \le i < j \le n} \left(a_i b_j - a_j b_i\right)^2$$

(note that the Cauchy–Schwarz inequality for \mathbb{R}^n follows immediately)

- 1. (a) Let $\{x_i\}_{i=1}^n \subset \mathbb{R}$ be *n* real numbers. Applying the CS inequality to the vectors (x_1, \ldots, x_n) and $(1, \ldots, 1)$, show that $(\frac{1}{n} \sum_{i=1}^n x_i)^2 \leq \frac{1}{n} \sum_{i=1}^n x_i^2$.
 - RMK The quantities $\frac{1}{n}\sum_{i=1}^{n} x_i$, $\sqrt{\frac{1}{n}\sum_{i=1}^{n} x_i^2 (\frac{1}{n}\sum_{i=1}^{n} x_i)^2}$ are called respectively the *expectation* and *standard deviation* of the random variable that takes the values x_i with equal probability $\frac{1}{n}$.
 - (**b) Let $\{x_i\}_{i=1}^n \subset \mathbb{R}$ be positive. The Arithmetic Mean of these numbers is the number $AM = \frac{1}{n}\sum_{i=1}^n x_i$. The Harmonic Mean is the number $\frac{1}{\frac{1}{n}\sum_{i=1}^n \frac{1}{x_i}} = \frac{n}{\sum_{i=1}^n \frac{1}{x_i}}$. Show the inequalithy of the means HM \leq AM (with equality iff all the x_i are equal) by applying the CS inequality to suitable vectors.

Inner products and norms

- 2. The *trace* of a square matrix is the sum of its diagonal entries $(trA = \sum_{i=1}^{n} a_{ii})$. PRAC Show that tr: $M_n(\mathbb{R}) \to \mathbb{R}$ is a linear functional.
 - (a) Show that for any two square matrices A, B we have tr(AB) = tr(BA).
 - (**b) Find three 2x2 matrices A, B, C such that $tr(ABC) \neq tr(BAC)$.
 - (c) Show that $tr(S^{-1}AS) = tr(A)$ if S is invertible.

PRAC Show that $\langle A, B \rangle \stackrel{\text{def}}{=} \operatorname{tr} (A^t B)$ is an inner product on $M_n(\mathbb{R})$

- DEF For $A \in M_{m,n}(\mathbb{C})$, its *Hermitian conjuate* is the matrix $A^{\dagger} \in M_{n,m}(\mathbb{C})$ with entries $a_{ij}^{\dagger} = \overline{a_{ji}}$ (complex conjuguate).
- (d) Show that $\langle A, B \rangle \stackrel{\text{def}}{=} \operatorname{tr} (A^{\dagger}B)$ is a Hermitian product on $M_n(\mathbb{C})$.

DEFINITION. Let *V* be a real or complex vector space. A *norm* (="notion of length") on *V* is a map $\|\cdot\|: V \to \mathbb{R}_{\geq 0}$ such that

- (1) $||a\underline{v}|| = |a| ||\underline{v}||$ (that is, $3\underline{v}$ is three times as long as \underline{v})
- (2) $\|\underline{u} + \underline{v}\| \le \|\underline{u}\| + \|\underline{v}\|$ ("triangle inequality")
- (3) $\|\underline{v}\| = 0$ iff $\underline{v} = \underline{0}$ (note that one direction follows from (1)).
- 3. (Examples of norms)
 - (a) Show that $||\underline{x}||_{\infty} = \max_i |x_i|$ is a norm on \mathbb{R}^n or \mathbb{C}^n .
 - (b) Show that $||f||_{\infty} = \max_{a \le x \le b} |f(x)|$ is a norm on C(a,b) (continuous functions on the interval [a,b]).
 - (c) (Sobolev norm) Show that $||f||_{H^1}^2 = \int_a^b (|f(x)|^2 + |f'(x)|^2) dx$ defines a norm on $C^{\infty}(a,b)$ (Hint: this norm is associated to an inner product)

Diagonalization

- 4. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. For $\underline{u} \in V$ set $\varphi_u(\underline{v}) = \langle \underline{u}, \underline{v} \rangle$. That $\varphi_u \in V^*$ follows from the definition of the inner product.
 - (a) Show that the map $V \to V^*$ given by $\underline{u} \to \varphi_{\underline{u}}$ is anti-linear, in that $\varphi_{c\underline{u}+\underline{u}'} = \overline{c}\varphi_{\underline{u}} + \varphi_{\underline{u}'}$.
 - (b) We proved in class that if dim $V = n < \infty$ then the map $\underline{u} \to \varphi_{\underline{u}}$ is a bijection $V \to V^*$. Show that its inverse map $V^* \rightarrow V$ is also anti-linear.

PRAC Check that the eigenvectors of the matrix $\begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix}$ from PS10 are orthogonal.

5. Let $A \in M_n(\mathbb{C})$ be diagonable. Show that there exists $B \in M_n(\mathbb{C})$ such that $B^2 = A$.

The Quantum Harmonic Oscillator, II

- 6*. Let $H = -D^2 + M_{x^2}$ acting on $V = \left\{ p(x)e^{-x^2/2} \mid p \in \mathbb{R}[x] \right\}$ as in PS10.
 - SUPP Show that $\langle f,g\rangle = \int_{-\infty}^{+\infty} \bar{f}gdx$ defines an inner product on V (the difficulty is to show the integrals converge)
 - SUPP Show that $i\frac{d}{dx}$ is a self-adjoint operator on V. (a) Show that $M_g^{\dagger} = M_{\bar{g}}$ for any polynomial g.

 - (b) Show that $-\frac{d^2}{dx^2}$ is self-adjoint and conclude that *H* is self-adjoint.
 - (c) Let $V_n = \left\{ p(x)e^{-x^2/2} \mid p \in \mathbb{R}^{<n}[x] \right\}$. Applying the spectral theorem on V_n and V_{n+1} show that Hhas a unique eigenvector of the form $h_n(x)e^{-x^2/2}$ where $h_n \in \mathbb{R}[x]$ has degree exactly *n*.
 - (d) Examining the leading coefficient of $H(h_n e^{-x^2/2})$ show that the eigenvalue is 2n+1.
 - (**e) Show that the h_n are (up to normalization) exactly the Hermite polynomials of PS11.

Supplementary problem: Fourier series

- In this problem we use the standard inner product on $C(-\pi,\pi)$. А
 - (a) Show that $\left\{\frac{1}{\sqrt{2\pi}}\right\} \cup \left\{\frac{1}{\sqrt{\pi}}\cos(nx), \frac{1}{\sqrt{\pi}}\sin(nx)\right\}_{n=1}^{\infty}$ is an orthonormal system there. (b) Let a_0, a_n, b_n be the coefficient of $f(x) = 2\pi |x| x^2$ with respect to $\frac{1}{\sqrt{2n}}, \frac{1}{\sqrt{\pi}}\cos(nx), \frac{1}{\sqrt{\pi}}\sin(nx)$.
 - Find these.
 - (c) Show that for any x, the series $\frac{1}{\sqrt{2\pi}}a_0 + \frac{1}{\sqrt{\pi}}\sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$ is absolutely convergent.

FACT1 The system above is *complete*, in that the only function orthogonal to the span is the zero function. If we denote the partial sums $(S_N f)(x) = a_0 \frac{1}{\sqrt{2\pi}} + \frac{1}{\sqrt{\pi}} \sum_{n=1}^{N} (a_n \cos(nx) + b_n \sin(nx))$, this shows $S_N f \xrightarrow[N \to \infty]{} f$ "on average" in the sense that $||f - S_N f||^2_{L^2(-\pi,\pi)} = \int_{-\pi}^{\pi} |f(x) - (S_N f)(x)|^2 dx \xrightarrow[N \to \infty]{} f$ 0 (in fact, this holds for any f such that $\int_{-\pi}^{+\pi} |f(x)|^2 dx < \infty$).

- FACT2 For any $x \in (-\pi, \pi)$ if the sequence of real numbers $\{(S_N f)(x)\}_{N=1}^{\infty}$ converges, and if f is continuous at x, then limit of the sequence is f(x).
- (d) Conclude that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, a discovery of Euler's.