Lior Silberman's Math 223: Problem Set 12 (due 14/4/2021)
 Practice problems

Section 6.2

Cauchy-Schwarz

SUPP Use induction on n to establish Lagrange's identity: for all $\underline{a}, \underline{b} \in \mathbb{R}^{n}$:

$$
\|\underline{a}\|^{2}\|\underline{b}\|^{2}-(\langle\underline{a}, \underline{b}\rangle)^{2}=\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)-\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}=\sum_{1 \leq i<j \leq n}\left(a_{i} b_{j}-a_{j} b_{i}\right)^{2}
$$

(note that the Cauchy-Schwarz inequality for \mathbb{R}^{n} follows immediately)

1. (a) Let $\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}$ be n real numbers. Applying the CS inequality to the vectors $\left(x_{1}, \ldots, x_{n}\right)$ and $(1, \ldots, 1)$, show that $\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}$.
RMK The quantities $\frac{1}{n} \sum_{i=1}^{n} x_{i}, \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}}$ are called respectively the expectation and standard deviation of the random variable that takes the values x_{i} with equal probability $\frac{1}{n}$.
(**b) Let $\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}$ be positive. The Arithmetic Mean of these numbers is the number $\mathrm{AM}=$ $\frac{1}{n} \sum_{i=1}^{n} x_{i}$. The Harmonic Mean is the number $\frac{1}{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}}=\frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}}}$. Show the inequalithy of the means $\mathrm{HM} \leq \mathrm{AM}$ (with equality iff all the x_{i} are equal) by applying the CS inequality to suitable vectors.

Inner products and norms

2. The trace of a square matrix is the sum of its diagonal entries $\left(\operatorname{tr} A=\sum_{i=1}^{n} a_{i i}\right)$.

PRAC Show that $\operatorname{tr}: M_{n}(\mathbb{R}) \rightarrow \mathbb{R}$ is a linear functional.
(a) Show that for any two square matrices A, B we have $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
(**b) Find three 2×2 matrices A, B, C such that $\operatorname{tr}(A B C) \neq \operatorname{tr}(B A C)$.
(c) Show that $\operatorname{tr}\left(S^{-1} A S\right)=\operatorname{tr}(A)$ if S is invertible.

PRAC Show that $\langle A, B\rangle \stackrel{\text { def }}{=} \operatorname{tr}\left(A^{t} B\right)$ is an inner product on $M_{n}(\mathbb{R})$
DEF For $A \in M_{m, n}(\mathbb{C})$, its Hermitian conjuate is the matrix $A^{\dagger} \in M_{n, m}(\mathbb{C})$ with entries $a_{i j}^{\dagger}=\overline{a_{j i}}$ (complex conjuguate).
(d) Show that $\langle A, B\rangle \stackrel{\text { def }}{=} \operatorname{tr}\left(A^{\dagger} B\right)$ is a Hermitian product on $M_{n}(\mathbb{C})$.

DEFinition. Let V be a real or complex vector space. A norm (="notion of length") on V is a map $\|\cdot\|: V \rightarrow \mathbb{R}_{\geq 0}$ such that
(1) $\|a \underline{v}\|=|a|\|\underline{v}\|$ (that is, $3 \underline{v}$ is three times as long as \underline{v})
(2) $\|\underline{u}+\underline{v}\| \leq\|\underline{u}\|+\|\underline{v}\|$ ("triangle inequality")
(3) $\|\underline{v}\|=0$ iff $\underline{v}=\underline{0}$ (note that one direction follows from (1)).
3. (Examples of norms)
(a) Show that $\|\underline{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$ is a norm on \mathbb{R}^{n} or \mathbb{C}^{n}.
(b) Show that $\|f\|_{\infty}=\max _{a \leq x \leq b}|f(x)|$ is a norm on $C(a, b)$ (continuous functions on the interval $[a, b]$).
(c) (Sobolev norm) Show that $\|f\|_{H^{1}}^{2}=\int_{a}^{b}\left(|f(x)|^{2}+\left|f^{\prime}(x)\right|^{2}\right) \mathrm{d} x$ defines a norm on $C^{\infty}(a, b)$ (Hint: this norm is associated to an inner product)

Diagonalization

4. Let $(V,\langle\cdot, \cdot\rangle)$ be an inner product space. For $\underline{u} \in V$ set $\varphi_{\underline{u}}(\underline{v})=\langle\underline{u}, \underline{v}\rangle$. That $\varphi_{\underline{u}} \in V^{*}$ follows from the definition of the inner product.
(a) Show that the map $V \rightarrow V^{*}$ given by $\underline{u} \rightarrow \varphi_{\underline{u}}$ is anti-linear, in that $\varphi_{c \underline{u}+\underline{u}^{\prime}}=\bar{c} \varphi_{\underline{u}}+\varphi_{\underline{u}^{\prime}}$.
(b) We proved in class that if $\operatorname{dim} V=n<\infty$ then the map $\underline{u} \rightarrow \varphi_{\underline{u}}$ is a bijection $V \rightarrow V^{*}$. Show that its inverse map $V^{*} \rightarrow V$ is also anti-linear.
PRAC Check that the eigenvectors of the matrix $\left(\begin{array}{lll}5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2\end{array}\right)$ from PS10 are orthogonal.
5. Let $A \in M_{n}(\mathbb{C})$ be diagonable. Show that there exists $B \in M_{n}(\mathbb{C})$ such that $B^{2}=A$.

The Quantum Harmonic Oscillator, II

6*. Let $H=-D^{2}+M_{x^{2}}$ acting on $V=\left\{p(x) e^{-x^{2} / 2} \mid p \in \mathbb{R}[x]\right\}$ as in PS10.
SUPP Show that $\langle f, g\rangle=\int_{-\infty}^{+\infty} \bar{f} g d x$ defines an inner product on V (the difficulty is to show the integrals converge)
SUPP Show that $i \frac{d}{d x}$ is a self-adjoint operator on V.
(a) Show that $M_{g}^{\dagger}=M_{\bar{g}}$ for any polynomial g.
(b) Show that $-\frac{d^{2}}{d x^{2}}$ is self-adjoint and conclude that H is self-adjoint.
(c) Let $V_{n}=\left\{p(x) e^{-x^{2} / 2} \mid p \in \mathbb{R}^{<n}[x]\right\}$. Applying the spectral theorem on V_{n} and V_{n+1} show that H has a unique eigenvector of the form $h_{n}(x) e^{-x^{2} / 2}$ where $h_{n} \in \mathbb{R}[x]$ has degree exactly n.
(d) Examining the leading coefficient of $H\left(h_{n} e^{-x^{2} / 2}\right)$ show that the eigenvalue is $2 n+1$.
(**e) Show that the h_{n} are (up to normalization) exactly the Hermite polynomials of PS11.

Supplementary problem: Fourier series

A In this problem we use the standard inner product on $C(-\pi, \pi)$.
(a) Show that $\left\{\frac{1}{\sqrt{2 \pi}}\right\} \cup\left\{\frac{1}{\sqrt{\pi}} \cos (n x), \frac{1}{\sqrt{\pi}} \sin (n x)\right\}_{n=1}^{\infty}$ is an orthonormal system there.
(b) Let a_{0}, a_{n}, b_{n} be the coefficient of $f(x)=2 \pi|x|-x^{2}$ with respect to $\frac{1}{\sqrt{2 n}}, \frac{1}{\sqrt{\pi}} \cos (n x), \frac{1}{\sqrt{\pi}} \sin (n x)$. Find these.
(c) Show that for any x, the series $\frac{1}{\sqrt{2 \pi}} a_{0}+\frac{1}{\sqrt{\pi}} \sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)$ is absolutely convergent.
FACT1 The system above is complete, in that the only function orthogonal to the span is the zero function. If we denote the partial sums $\left(S_{N} f\right)(x)=a_{0} \frac{1}{\sqrt{2 \pi}}+\frac{1}{\sqrt{\pi}} \sum_{n=1}^{N}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)$, this shows $S_{N} f \xrightarrow[N \rightarrow \infty]{\longrightarrow} f$ "on average" in the sense that $\left\|f-S_{N} f\right\|_{L^{2}(-\pi, \pi)}^{2}=\int_{-\pi}^{\pi}\left|f(x)-\left(S_{N} f\right)(x)\right|^{2} \mathrm{~d} x \xrightarrow[N \rightarrow \infty]{\longrightarrow}$ 0 (in fact, this holds for any f such that $\int_{-\pi}^{+\pi}|f(x)|^{2} \mathrm{~d} x<\infty$).
FACT2 For any $x \in(-\pi, \pi)$ if the sequence of real numbers $\left\{\left(S_{N} f\right)(x)\right\}_{N=1}^{\infty}$ converges, and if f is continuous at x, then limit of the sequence is $f(x)$.
(d) Conclude that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$, a discovery of Euler's.

