Lior Silberman's Math 223: Problem Set 11 (due 7/4/2021)

Practice problems

Section 6.1: all problems are suitable
A. Write down some matrix $A \in M_{4}(\mathbb{R})$ such that A has four distinct eigenvalues (your choice) with the correspoding eigenvectors being $\left(\begin{array}{l}1 \\ 2 \\ 0 \\ 3\end{array}\right),\left(\begin{array}{l}2 \\ 4 \\ 1 \\ 6\end{array}\right),\left(\begin{array}{l}2 \\ 2 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 2\end{array}\right)$.
B. Let V be a vector space, $\varphi \in V^{*}$ a linear functional and $\underline{w} \in V$ a fixed vector. Suppose that $\varphi(\underline{w}) \neq 0$.
(a) Show directly that $V=\operatorname{Ker} \varphi \oplus \operatorname{Span}(\underline{w})$.
(b) Show that the map $T: V \rightarrow V$ given by $T \underline{v}=\underline{v}-2 \frac{\varphi(\underline{v})}{\varphi(\underline{w})} \underline{w}$ is linear.
(c) What is T^{2} ?
(d) Find all the eigenvalues of T (suppose that $\operatorname{dim} V \geq 2$).
(e) Show that T is diagonable.

More on diagonalization

1. (a) Let V be a real vector space of odd dimension. Prove that every $T \in \operatorname{End}(V)$ has a real eigenvalue.
(b) Define $T: \mathbb{R}[x]^{\leq 3} \rightarrow \mathbb{R}[x]^{\leq 3}$ by $(T p)(x)=x^{3} p(-1 / x)$. Prove that T has no real eigenvalues. (Hint: what is T^{2} ?)
(c) Define $T: \mathbb{C}[x]^{\leq 3} \rightarrow \mathbb{C}[x]^{\leq 3}$ by $(T p)(x)=x^{3} p(-1 / x)$. Find the spectrum of T and exhibit one eigenvector for each eigenvalue.
2. Let V be a vector space, let $\left\{\lambda_{i}\right\}_{i=1}^{r}$ be distinct numbers, and let $T \in \operatorname{End}(V)$ satisfy $p(T)=0$ where $p(x)=\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{r}\right)=\prod_{i=1}^{r}\left(x-\lambda_{i}\right)$.
(a) Show that the spectrum of T is contained in $\left\{\lambda_{i}\right\}_{i=1}^{n}$.
(b) Fix j and define an auxiliary map $R=R_{j}$ by $R=\prod_{i \neq j}\left(\frac{T-\lambda_{i}}{\lambda_{j}-\lambda_{i}}\right)$. Show that $T \cdot R=\lambda_{j} R$.
(c) Show by induction on k that $T^{k} R=\lambda_{j}^{k} R$ for all $k \geq 0$.
(d) Show that the maps $q \mapsto q(T) R, q \mapsto q\left(\lambda_{i}\right) R$ are linear maps $\mathbb{R}[x] \rightarrow \operatorname{End}(V)$. Then show that they are equal.
(e) Show that R is a projection.
(f) Show that $\operatorname{Im}(R)=\operatorname{Ker}\left(T-\lambda_{j}\right)$.
(g) Show that T is diagonable.
3. Fix a vector space V and let $T, S \in \operatorname{End}(V)$ satisfy $T S=S T$.
(a) Suppose that $T \underline{v}=\lambda \underline{v}$ for some λ and $\underline{v} \in V$. Show that $T(S \underline{v})=\lambda(S \underline{v})$.

CONCLUSION Let $V_{\lambda}=\{\underline{v} \in V \mid T \underline{v}=\lambda \underline{v}\}$. Then $S\left(V_{\lambda}\right) \subset V_{\lambda}$.
SUPP Let A, B be invertible linear maps. Show that $A B=B A$ iff $A B A^{-1} B^{-1}=\mathrm{Id}$.
DEF An image of the discrete Heisenberg group is a triple of invertible maps $A, B, Z \in \operatorname{End}(V)$ such that $A B A^{-1} B^{-1}=Z$ and such that $A Z A^{-1} Z^{-1}=B Z B^{-1} Z^{-1}=\mathrm{Id}$ (" A, B commute with their commutator"). Fix such a triple for the rest of the problem.
(*) Let ζ be an eigenvalue of Z, and let λ be an eigenvalue of the map $A{ }_{v_{\zeta}}$ we bound in problem (a) (we set $V_{\zeta}=\operatorname{Ker}(Z-\zeta)$). Show that $\lambda \zeta$ is also an eigenvalue of $A \upharpoonright_{\zeta}$ (hint: try doing something to the eigenvector).
(c) Suppose V is finite-dimensional. Show that we must have $\zeta^{k}=1$ for some k.
(d) $\operatorname{Compute} \operatorname{det}\left(Z{ }_{V_{\zeta}}\right)$ in two different ways to show that $\zeta^{\operatorname{dim} V_{\zeta}}=1$.

Calculating with inner products

4. Let $S=\left\{\left(\begin{array}{l}i \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ i+1 \\ 1-2 i\end{array}\right),\left(\begin{array}{c}0 \\ 5+2 i \\ 1+2 i\end{array}\right)\right\} \subset \mathbb{C}^{3}$.
(a) Calculate the 9 pairwise inner products of the vectors.
(b) Calculate the norms of the three vectors (recall that $\|\underline{x}\|=\sqrt{\langle\underline{x}, \underline{x}\rangle}$).
5. Let $S=\left\{\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right), \frac{1}{\sqrt{6}}\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)\right\} \subset \mathbb{R}^{3}$.
(a) Verify that this is an orthonormal basis of \mathbb{R}^{3}.
(b) Find the coordinates of the vectors $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}5 \\ 6 \\ 7\end{array}\right)$ in this basis.
6. Find an orthonormal basis for the subspace $W^{\perp} \subset \mathbb{R}^{4}$ if $W=\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)\right\}$.
7. Using the standard $\left(L^{2}\right)$ inner product on $C(-1,1)$ apply the Gram-Schmidt procedure to the following independent sequences:
(a) $\left\{1, x, x^{2}\right\}$ (in that order)

RMK Applying the Gram-Schmidt procedure to the full sequence $\left\{x^{n}\right\}_{n=0}^{\infty}$ yields the sequence of Legendre polynomials $P_{n}(x)$ (with a non-standard normalization).
(b) $\left\{x^{2}, x, 1\right\}$ (in that order)

PRAC In each case apply the Gram-Schmidt procedure to the first few members of the sequence $\left\{1, x, x^{2}, \cdots\right\}$ with respect to the given inner product on $\mathbb{R}[x]$.
(a) (Hermit polynomials) $\langle f, g\rangle=\int_{-\infty}^{+\infty} f(x) g(x) e^{-x^{2}} \mathrm{~d} x$.
(b) (Laguerre polynomials) $\langle f, g\rangle=\int_{0}^{\infty} f(x) g(x) e^{-x} \mathrm{~d} x$.

Supplementary problems: the minimal polynomial

A. (Division with remainder) Let $p, a \in \mathbb{R}[x]$ with a non-zero. Show that there are unique $q, r \in \mathbb{R}[x]$ with $\operatorname{deg} r<\operatorname{deg} a$ such that $p=q a+r$. (Hint: let r be an element of minimal degree in the set $\{p-a q \mid q \in \mathbb{R}[x]\})$.
B. Let V be an n-dimensional vector psace and let $T \in \operatorname{End}(V)$.
(a) Show that there exists a non-zero $p \in \mathbb{R}[x]^{\leq n^{2}}$ such that $p(T)=0$.
(Hint: what is dim $\operatorname{End}(V)$?)
DEF A polynomial is monic if the highest-degree monomial has coefficient $1\left(x^{2}+3\right.$ is monic, $2 x^{2}+3$ is not).
(b) Rescaling the polynomial, show that there exists a monic polynomial p^{\prime} of the same degree as p such that $p^{\prime}(T)=0$.
(c) Let $m_{T} \in \mathbb{R}[x]$ be a monic polynomial of least degree such that $m_{T}(T)=0$. Show that for any $p \in \mathbb{R}[x]$ we have $p(T)=0$ iff $m_{T} \mid p$ in $\mathbb{R}[x]$, that is if there is $q \in \mathbb{R}[x]$ such that $p=m_{T} q$.
(d) Let \tilde{m}_{T} be another monic polynomial of the same degree as m_{T} such that $\tilde{m}_{T}(T)=0$. Show that $\tilde{m}_{T}=m_{T}$.
DEF m_{T} is called the minimal polynomial of T (saying "the" minimal polynomial is justified by part d).

RMK The Cayley-Hamilton Theorem states that $p_{T}(T)=0$ (here p_{T} is the characteristic polynomial). It follows that $\operatorname{deg} m_{T} \leq \operatorname{deg} p_{T} \leq n$ and that $m_{A} \mid p_{A}$.

Supplementary problem: The Rayleigh quotient

C. Given a matrix $A \in M_{n}(\mathbb{R})$ consider the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f(\underline{x})=\underline{x}^{t} A \underline{x}=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}$. We introduce the notation $\|\underline{x}\|_{2}^{2}=\sum_{i=1}^{n} x_{i}^{2}$.
(a) Show that $(\nabla f)(\underline{x})=A \underline{x}+A^{t} \underline{x}$.
(b) Let \underline{v} be the point where f attains its maximum on the unit sphere $S^{n-1}=\left\{\underline{x} \in \mathbb{R}^{n} \mid\|\underline{x}\|=1\right\}$. Use the method of Largrange multipliers to show that \underline{v} satisfies $A \underline{v}+A^{t} \underline{v}=\lambda \underline{v}$ for some $\lambda \in \mathbb{R}$.
(c) A matrix is symmetric if $A=A^{t}$. Show that every symmetric matrix has a real eigenvalue.
(d) Show that the following two maximization problems are equivalent:

$$
\max \left\{f(\underline{x}) \mid\|\underline{w}\|_{2}=1\right\} \leftrightarrow \max \left\{\left.\frac{f(\underline{x})}{\|\underline{x}\|_{2}^{2}} \right\rvert\, \underline{x} \neq \underline{0}\right\} .
$$

