Lior Silberman's Math 223: Problem Set 11 (due 7/4/2021)

Practice problems

Section 6.1: all problems are suitable

A. Write down some matrix $A \in M_4(\mathbb{R})$ such that A has four distinct eigenvalues (your choice) with the (1) (2) (2) (0)

correspoding eigenvectors being

ng
$$\begin{pmatrix} 1\\2\\0\\3 \end{pmatrix}$$
, $\begin{pmatrix} 2\\4\\1\\6 \end{pmatrix}$, $\begin{pmatrix} 2\\2\\1\\1 \end{pmatrix}$, $\begin{pmatrix} 0\\1\\0\\2 \end{pmatrix}$.

- B. Let *V* be a vector space, $\varphi \in V^*$ a linear functional and $\underline{w} \in V$ a fixed vector. Suppose that $\varphi(\underline{w}) \neq 0$. (a) Show directly that $V = \text{Ker } \varphi \oplus \text{Span}(\underline{w})$.
 - (b) Show that the map $T: V \to V$ given by $T\underline{v} = \underline{v} 2\frac{\varphi(\underline{v})}{\varphi(w)}\underline{w}$ is linear.
 - (c) What is T^2 ?
 - (d) Find all the eigenvalues of T (suppose that dim $V \ge 2$).
 - (e) Show that *T* is diagonable.

More on diagonalization

- 1. (a) Let V be a real vector space of odd dimension. Prove that every $T \in \text{End}(V)$ has a real eigenvalue.
 - (b) Define $T: \mathbb{R}[x]^{\leq 3} \to \mathbb{R}[x]^{\leq 3}$ by $(Tp)(x) = x^3p(-1/x)$. Prove that T has no real eigenvalues. (Hint: what is T^2 ?)
 - (c) Define $T: \mathbb{C}[x]^{\leq 3} \to \mathbb{C}[x]^{\leq 3}$ by $(Tp)(x) = x^3p(-1/x)$. Find the spectrum of T and exhibit one eigenvector for each eigenvalue.
- 2. Let *V* be a vector space, let $\{\lambda_i\}_{i=1}^r$ be *distinct* numbers, and let $T \in \text{End}(V)$ satisfy p(T) = 0 where $p(x) = (x \lambda_1) \cdots (x \lambda_r) = \prod_{i=1}^r (x \lambda_i)$.
 - (a) Show that the spectrum of *T* is contained in $\{\lambda_i\}_{i=1}^n$.
 - (b) Fix *j* and define an auxiliary map $R = R_j$ by $R = \prod_{i \neq j} \left(\frac{T \lambda_i}{\lambda_j \lambda_i} \right)$. Show that $T \cdot R = \lambda_j R$.
 - (c) Show by induction on *k* that $T^k R = \lambda_i^k R$ for all $k \ge 0$.
 - (d) Show that the maps $q \mapsto q(T)R$, $q \mapsto q(\lambda_i)R$ are linear maps $\mathbb{R}[x] \to \text{End}(V)$. Then show that they are equal.
 - (e) Show that *R* is a projection.
 - (f) Show that $\text{Im}(R) = \text{Ker}(T \lambda_j)$.
 - (g) Show that *T* is diagonable.
- 3. Fix a vector space V and let $T, S \in \text{End}(V)$ satisfy TS = ST.
 - (a) Suppose that $T\underline{v} = \lambda \underline{v}$ for some λ and $\underline{v} \in V$. Show that $T(S\underline{v}) = \lambda (S\underline{v})$.

CONCLUSION Let $V_{\lambda} = \{ \underline{v} \in V \mid T \underline{v} = \lambda \underline{v} \}$. Then $S(V_{\lambda}) \subset V_{\lambda}$.

SUPP Let A, B be invertible linear maps. Show that AB = BA iff $ABA^{-1}B^{-1} = Id$.

- DEF An image of the discrete Heisenberg group is a triple of invertible maps $A, B, Z \in \text{End}(V)$ such that $ABA^{-1}B^{-1} = Z$ and such that $AZA^{-1}Z^{-1} = BZB^{-1}Z^{-1} = \text{Id}$ ("A, B commute with their commutator"). Fix such a triple for the rest of the problem.
- (*b) Let ζ be an eigenvalue of Z, and let λ be an eigenvalue of the map $A \upharpoonright_{V_{\zeta}}$ we bound in problem (a) (we set $V_{\zeta} = \text{Ker}(Z - \zeta)$). Show that $\lambda \zeta$ is also an eigenvalue of $A \upharpoonright_{V_{\zeta}}$ (hint: try doing something to the eigenvector).
- (c) Suppose V is finite-dimensional. Show that we must have $\zeta^k = 1$ for some k.
- (d) Compute det $(Z \upharpoonright_{V_{\zeta}})$ in two different ways to show that $\zeta^{\dim V_{\zeta}} = 1$.

Calculating with inner products

4. Let
$$S = \left\{ \begin{pmatrix} i \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ i+1 \\ 1-2i \end{pmatrix}, \begin{pmatrix} 0 \\ 5+2i \\ 1+2i \end{pmatrix} \right\} \subset \mathbb{C}^3.$$

- (a) Calculate the 9 pairwise inner products of the vectors.
- (b) Calculate the norms of the three vectors (recall that $||\underline{x}|| = \sqrt{\langle \underline{x}, \underline{x} \rangle}$).
- 5. Let $S = \left\{ \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\-2\\1 \end{pmatrix} \right\} \subset \mathbb{R}^3.$
 - (a) Verify that this is an orthonormal basis of \mathbb{R}^3 .
 - (a) Verify that the test is a final field of the vectors $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$, $\begin{pmatrix} 5\\6\\7 \end{pmatrix}$ in this basis.
- 6. Find an orthonormal basis for the subspace $W^{\perp} \subset \mathbb{R}^4$ if $W = \text{Span} \left\{ \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix} \right\}$.
- 7. Using the standard (L^2) inner product on C(-1, 1) apply the Gram–Schmidt procedure to the following independent sequences:
 - (a) $\{1, x, x^2\}$ (in that order)
 - RMK Applying the Gram–Schmidt procedure to the full sequence $\{x^n\}_{n=0}^{\infty}$ yields the sequence of Legendre polynomials $P_n(x)$ (with a non-standard normalization).
 - (b) $\{x^2, x, 1\}$ (in that order)
- PRAC In each case apply the Gram–Schmidt procedure to the first few members of the sequence $\{1, x, x^2, \dots\}$ with respect to the given inner product on $\mathbb{R}[x]$.
 - (a) (Hermit polynomials) $\langle f,g \rangle = \int_{-\infty}^{+\infty} f(x)g(x)e^{-x^2} dx.$
 - (b) (Laguerre polynomials) $\langle f, g \rangle = \int_0^\infty f(x)g(x)e^{-x} dx$.

Supplementary problems: the minimal polynomial

- A. (Division with remainder) Let $p, a \in \mathbb{R}[x]$ with *a* non-zero. Show that there are unique $q, r \in \mathbb{R}[x]$ with deg $r < \deg a$ such that p = qa + r. (*Hint*: let *r* be an element of minimal degree in the set $\{p aq \mid q \in \mathbb{R}[x]\}$).
- B. Let *V* be an *n*-dimensional vector psace and let $T \in \text{End}(V)$.
 - (a) Show that there exists a non-zero $p \in \mathbb{R}[x]^{\leq n^2}$ such that p(T) = 0. (*Hint*: what is dim End(V)?)
 - DEF A polynomial is *monic* if the highest-degree monomial has coefficient 1 (x^2 + 3 is monic, $2x^2$ + 3 is not).
 - (b) Rescaling the polynomial, show that there exists a monic polynomial p' of the same degree as p such that p'(T) = 0.
 - (c) Let $m_T \in \mathbb{R}[x]$ be a monic polynomial of least degree such that $m_T(T) = 0$. Show that for any $p \in \mathbb{R}[x]$ we have p(T) = 0 iff $m_T \mid p$ in $\mathbb{R}[x]$, that is if there is $q \in \mathbb{R}[x]$ such that $p = m_T q$.
 - (d) Let \tilde{m}_T be another monic polynomial of the same degree as m_T such that $\tilde{m}_T(T) = 0$. Show that $\tilde{m}_T = m_T$.
 - DEF m_T is called the *minimal polynomial* of *T* (saying "the" minimal polynomial is justified by part d).
 - RMK The Cayley–Hamilton Theorem states that $p_T(T) = 0$ (here p_T is the characteristic polynomial). It follows that deg $m_T \le \deg p_T \le n$ and that $m_A | p_A$.

Supplementary problem: The Rayleigh quotient

- C. Given a matrix $A \in M_n(\mathbb{R})$ consider the function $f \colon \mathbb{R}^n \to \mathbb{R}$ given by $f(\underline{x}) = \underline{x}^t A \underline{x} = \sum_{i,j=1}^n a_{ij} x_i x_j$. We introduce the notation $\|\underline{x}\|_2^2 = \sum_{i=1}^n x_i^2$.
 - (a) Show that $(\nabla f)(\underline{x}) = A\underline{x} + A^t\underline{x}$.
 - (b) Let \underline{v} be the point where f attains its maximum on the unit sphere $S^{n-1} = \{\underline{x} \in \mathbb{R}^n \mid ||\underline{x}|| = 1\}$. Use the method of Largrange multipliers to show that \underline{v} satisfies $A\underline{v} + A^t\underline{v} = \lambda\underline{v}$ for some $\lambda \in \mathbb{R}$.
 - (c) A matrix is *symmetric* if $A = A^t$. Show that every symmetric matrix has a real eigenvalue.
 - (d) Show that the following two maximization problems are equivalent:

$$\max\left\{f(\underline{x}) \mid \|\underline{w}\|_2 = 1\right\} \leftrightarrow \max\left\{\frac{f(\underline{x})}{\|\underline{x}\|_2^2} \mid \underline{x} \neq \underline{0}\right\}.$$