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Lior Silberman’s Math 223: Problem Set 11 (due 7/4/2021)

Practice problems
Section 6.1: all problems are suitable

A. Write down some matrix A ∈M4(R) such that A has four distinct eigenvalues (your choice) with the

correspoding eigenvectors being


1
2
0
3

 ,


2
4
1
6

 ,


2
2
1
1

 ,


0
1
0
2

.

B. Let V be a vector space, ϕ ∈V ∗ a linear functional and w∈V a fixed vector. Suppose that ϕ(w) 6= 0.
(a) Show directly that V = Kerϕ⊕Span(w).
(b) Show that the map T : V →V given by T v = v−2 ϕ(v)

ϕ(w)w is linear.

(c) What is T 2?
(d) Find all the eigenvalues of T (suppose that dimV ≥ 2).
(e) Show that T is diagonable.

More on diagonalization
1. (a) Let V be a real vector space of odd dimension. Prove that every T ∈ End(V ) has a real eigen-

value.
(b) Define T : R[x]≤3 → R[x]≤3 by (T p)(x) = x3 p(−1/x). Prove that T has no real eigenvalues.

(Hint: what is T 2?)
(c) Define T : C[x]≤3→ C[x]≤3 by (T p)(x) = x3 p(−1/x). Find the spectrum of T and exhibit one

eigenvector for each eigenvalue.

2. Let V be a vector space, let {λi}r
i=1 be distinct numbers, and let T ∈ End(V ) satisfy p(T ) = 0 where

p(x) = (x−λ1) · · ·(x−λr) = ∏
r
i=1 (x−λi).

(a) Show that the spectrum of T is contained in {λi}n
i=1.

(b) Fix j and define an auxiliary map R = R j by R = ∏i 6= j

(
T−λi
λ j−λi

)
. Show that T ·R = λ jR.

(c) Show by induction on k that T kR = λ k
j R for all k ≥ 0.

(d) Show that the maps q 7→ q(T )R, q 7→ q(λi)R are linear maps R[x]→ End(V ). Then show that
they are equal.

(e) Show that R is a projection.
(f) Show that Im(R) = Ker(T −λ j).
(g) Show that T is diagonable.

3. Fix a vector space V and let T,S ∈ End(V ) satisfy T S = ST .
(a) Suppose that T v = λv for some λ and v ∈V . Show that T (Sv) = λ (Sv).
CONCLUSION Let Vλ = {v ∈V | T v = λv}. Then S(Vλ )⊂Vλ .
SUPP Let A,B be invertible linear maps. Show that AB = BA iff ABA−1B−1 = Id.
DEF An image of the discrete Heisenberg group is a triple of invertible maps A,B,Z ∈ End(V ) such

that ABA−1B−1 = Z and such that AZA−1Z−1 = BZB−1Z−1 = Id (“A,B commute with their
commutator”). Fix such a triple for the rest of the problem.

(*b) Let ζ be an eigenvalue of Z, and let λ be an eigenvalue of the map A �Vζ
we bound in problem

(a) (we set Vζ = Ker(Z−ζ )). Show that λζ is also an eigenvalue of A �Vζ
(hint: try doing

something to the eigenvector).
(c) Suppose V is finite-dimensional. Show that we must have ζ k = 1 for some k.
(d) Compute det(Z �Vζ

) in two different ways to show that ζ
dimVζ = 1.



LIOR SILBERMAN’S MATH 223: PROBLEM SET 11 (DUE 7/4/2021) 98

Calculating with inner products

4. Let S =


 i

0
0

 ,

 1
i+1
1−2i

 ,

 0
5+2i
1+2i

⊂ C3.

(a) Calculate the 9 pairwise inner products of the vectors.
(b) Calculate the norms of the three vectors (recall that ‖x‖=

√
〈x,x〉).

5. Let S =

 1√
3

1
1
1

 , 1√
2

 1
0
−1

 , 1√
6

 1
−2
1

⊂ R3.

(a) Verify that this is an orthonormal basis of R3.

(b) Find the coordinates of the vectors

1
0
0

 ,

5
6
7

 in this basis.

6. Find an orthonormal basis for the subspace W⊥ ⊂ R4 if W = Span




1
1
0
0

 ,


1
2
3
4


.

7. Using the standard (L2) inner product on C(−1,1) apply the Gram–Schmidt procedure to the follow-
ing independent sequences:
(a)

{
1,x,x2} (in that order)

RMK Applying the Gram–Schmidt procedure to the full sequence {xn}∞

n=0 yields the sequence of
Legendre polynomials Pn(x) (with a non-standard normalization).

(b)
{

x2,x,1
}

(in that order)

PRAC In each case apply the Gram–Schmidt procedure to the first few members of the sequence
{

1,x,x2, · · ·
}

with respect to the given inner product on R[x].
(a) (Hermit polynomials) 〈 f ,g〉=

∫+∞

−∞
f (x)g(x)e−x2

dx.
(b) (Laguerre polynomials) 〈 f ,g〉=

∫
∞

0 f (x)g(x)e−x dx.
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Supplementary problems: the minimal polynomial
A. (Division with remainder) Let p,a ∈ R[x] with a non-zero. Show that there are unique q,r ∈ R[x]

with degr < dega such that p = qa+ r. (Hint: let r be an element of minimal degree in the set
{p−aq | q ∈ R[x]}).

B. Let V be an n-dimensional vector psace and let T ∈ End(V ).
(a) Show that there exists a non-zero p ∈ R[x]≤n2

such that p(T ) = 0.
(Hint: what is dimEnd(V )?)

DEF A polynomial is monic if the highest-degree monomial has coefficient 1 (x2+3 is monic, 2x2+3
is not).

(b) Rescaling the polynomial, show that there exists a monic polynomial p′ of the same degree as p
such that p′(T ) = 0.

(c) Let mT ∈ R[x] be a monic polynomial of least degree such that mT (T ) = 0. Show that for any
p ∈ R[x] we have p(T ) = 0 iff mT | p in R[x], that is if there is q ∈ R[x] such that p = mT q.

(d) Let m̃T be another monic polynomial of the same degree as mT such that m̃T (T ) = 0. Show that
m̃T = mT .

DEF mT is called the minimal polynomial of T (saying “the” minimal polynomial is justified by part
d).

RMK The Cayley–Hamilton Theorem states that pT (T ) = 0 (here pT is the characteristic polyno-
mial). It follows that degmT ≤ deg pT ≤ n and that mA|pA.

Supplementary problem: The Rayleigh quotient

C. Given a matrix A ∈Mn(R) consider the function f : Rn→ R given by f (x) = xtAx = ∑
n
i, j=1 ai jxix j.

We introduce the notation ‖x‖2
2 = ∑

n
i=1 x2

i .
(a) Show that (∇ f )(x) = Ax+Atx.
(b) Let v be the point where f attains its maximum on the unit sphere Sn−1 = {x ∈ Rn | ‖x‖= 1}.

Use the method of Largrange multipliers to show that v satisfies Av+Atv = λv for some λ ∈ R.
(c) A matrix is symmetric if A = At . Show that every symmetric matrix has a real eigenvalue.
(d) Show that the following two maximization problems are equivalent:

max{ f (x) | ‖w‖2 = 1}↔max

{
f (x)

‖x‖2
2

| x 6= 0

}
.


