Math 223: Problem Set 10 (due 16/11/2012)

Practice problems

Section 5.1: all problems are suitable

Section 5.2: all problems are suitable

PRAC Let $T, T' \in \text{End}(V)$ be similar. Show that $p_T(x) = p_{T'}(x)$. (Hint: show that $x \operatorname{Id} - T$, $x \operatorname{Id} - T'$ are similar)

Calculation

1. Find the characteristic polynomial of the following matrices.

(a)
$$\begin{pmatrix} 5 & 7 \\ -3 & 2 \end{pmatrix}$$
 (b) $\begin{pmatrix} \pi & e \\ \sqrt{7} & 0 \end{pmatrix}$ (c) $\begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ -a_0 & \cdots & \cdots & -a_{n-2} & -a_{n-1} \end{pmatrix}$.

- 2. For each of the following matrices find its spectrum and a basis for each eigenspace.
 - (a) $\begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix}$ (b) $\frac{1}{3} \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$.

Projections

Fix a vector space V.

- 3. Let $T \in \text{End}(V)$, $p \in \mathbb{R}[x]$ and suppose that p(T) = 0. Show that $p(\lambda) = 0$ for all eigenvalues λ of V.
- 4. Let $P \in \text{End}(V)$ satisfy $P^2 = P$. Such maps are called *projections*.
 - (a) Apply problem 3 to show that $\text{Spec}(P) \subset \{0, 1\}$.
 - (b) Show that (I P) is a projection as well.
 - (c) Show $V_1 = \text{Im} P$.
 - (*d) Note that $V_0 = \text{Ker } P$ by definition. Show that $V_0 = \text{Im}(I P)$ and conclude that $V = V_0 \oplus V_1$.
 - (*e) Converse: let $V_0, V_1 \subset V$ be arbitrary subspaces such that $V = V_0 \oplus V_1$. Show that there exists a unique $P \in \text{End}(V)$ such that $P(\underline{v}_0) = \underline{0}, P(\underline{v}_1) = \underline{v}_1$ for all $\underline{v}_i \in V_i$, and that this *P* is a projection.
 - DEF This *P* is called the *projection onto* V_1 *along* V_0 .
 - (f) Let $V_0 = \text{Span}\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix} \right\} V_1 = \text{Span}\left\{ \begin{pmatrix} 4\\5\\6 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}$ so that $\mathbb{R}^3 = V_0 \oplus V_1$ [check for yourself].

Let *P* be the projection onto V_1 along V_0 . Find the matrix of *P* with respect to the *standard basis* of \mathbb{R}^3 .

The Quantum Harmonic Oscillator, I

PRAC In physics a "parity operator" is a map $R \in \text{End}(V)$ such that $R^2 = \text{Id}_V$.

RMK This is problem 5, but it is not for submission.

- (a) Show that $\pm Id_V$ are (uninteresting) parity operators.
- (b) For parts (b)-(d) fix a parity operator *R*. Show that its eigenvalues are in $\{\pm 1\}$ and let V_{\pm} be the corresponding eigenspaces.
- (c) Show that $\frac{I+R}{2}$, $\frac{I-R}{2}$ are the projections onto V_+, V_- along the other subspace, respectively.
- (d) Conclude that $V = V_+ \oplus V_-$ and hence that every parity operator is diagonalizable.
- (e) Let X be a set and let $\tau: X \to X$ be an *involution*: a map such that $\tau^2 = \text{Id}_X$. Let $R_\tau \in \text{End}(\mathbb{R}^X)$ be the map $f \mapsto f \circ \tau$. Show that P_τ is a parity operator.
- (f) Let $X = \mathbb{R}$, $\tau(x) = -x$. Explain how (b)-(e) relate to the concepts of *odd* and *even* functions.
- 6. Let $V = \left\{ p(x)e^{-x^2/2} \mid p \in \mathbb{R}[x] \right\}$ and for $n \ge 1$ let $V_n = \left\{ p(x)e^{-x^2/2} \mid p \in \mathbb{R}[x]^{< n} \right\} \subset V$. Let $H \in C^{\infty}(\mathbb{R})$ be the operator ("quantum Hamiltonian") $H = -D^2 + M_{x^2}$. In other words we have $Hf = -\frac{d^2f}{dx^2} + x^2f$.

PRAC Show that $V_n \subset V$ are subspaces of $C^{\infty}(\mathbb{R})$, the space of infinitely differentiable functions.

- (a) Show that $HV \subset V$ and $HV_n \subset V_n$.
- (b) Let $H_n = H \upharpoonright_{V_n} \in \text{End}(V_n)$ be the restriction of H to V_n . Show that H_n has an upper-triangular basis with respect to an appropriate basis of V_n and determine its eigenvalues.
- (c) Show that H_n is diagonable.
- (d) Show that HR = RH for the parity operator of 5(f).
- (*e) Show that every eigenfunction of H_n is either even or odd. Which is which?
- (f) Show that $V = \left\{ p(x)e^{-x^2/2} \mid p \in \mathbb{R}[x] \right\}$ has a basis of eigenfunctions of *H*, and that each eigenfunction is either even or odd.

Supplementary problem: Nilpotent operators

- A Let $N \in \text{End}(V)$.
 - (a) Define subspaces $W_k \subset V$ by $W_0 = V$ and $W_{k+1} = NW_k$. Show that $W_k = \text{Im}(N^k)$.
 - (b) Suppose that $W_{k+1} \subsetneq W_k$ for $0 \le k \le K 1$. Show that dim $V \ge K$.
 - (c) Show that either the sequence $\{W_k\}_{k=0}^{\infty}$ reaches zero after at most dim V steps or there is a non-zero subspace $W \subset V$ such that NW = W.
 - (d) Suppose that $N^k = 0$ for some large k. Show that $N^n = 0$ where $n = \dim V$.
 - DEF *N* such that $N^k = 0$ is called *nilpotent*
 - (e) Find the spectrum of a nilpotent operator.