Math 223: Problem Set 10 (due 16/11/2012)
 Practice problems

Section 5.1: all problems are suitable
Section 5.2: all problems are suitable
PRAC Let $T, T^{\prime} \in \operatorname{End}(V)$ be similar. Show that $p_{T}(x)=p_{T^{\prime}}(x)$. (Hint: show that $x \mathrm{Id}-T, x \mathrm{Id}-T^{\prime}$ are similar)

Calculation

1. Find the characteristic polynomial of the following matrices.
(a) $\left(\begin{array}{cc}5 & 7 \\ -3 & 2\end{array}\right)$ (b) $\left(\begin{array}{cc}\pi & e \\ \sqrt{7} & 0\end{array}\right)$ (c) $\left(\begin{array}{ccccc}0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ -a_{0} & \cdots & \cdots & -a_{n-2} & -a_{n-1}\end{array}\right)$.
2. For each of the following matrices find its spectrum and a basis for each eigenspace.
(a) $\left(\begin{array}{lll}5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2\end{array}\right)$ (b) $\frac{1}{3}\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2\end{array}\right)$.

Projections

Fix a vector space V.
3. Let $T \in \operatorname{End}(V), p \in \mathbb{R}[x]$ and suppose that $p(T)=0$. Show that $p(\lambda)=0$ for all eigenvalues λ of V.
4. Let $P \in \operatorname{End}(V)$ satisfy $P^{2}=P$. Such maps are called projections.
(a) Apply problem 3 to show that $\operatorname{Spec}(P) \subset\{0,1\}$.
(b) Show that $(I-P)$ is a projection as well.
(c) Show $V_{1}=\operatorname{Im} P$.
$(* \mathrm{~d})$ Note that $V_{0}=\operatorname{Ker} P$ by definition. Show that $V_{0}=\operatorname{Im}(I-P)$ and conclude that $V=V_{0} \oplus V_{1}$.
(*e) Converse: let $V_{0}, V_{1} \subset V$ be arbitrary subspaces such that $V=V_{0} \oplus V_{1}$. Show that there exists a unique $P \in \operatorname{End}(V)$ such that $P\left(\underline{v}_{0}\right)=\underline{0}, P\left(\underline{v}_{1}\right)=\underline{v}_{1}$ for all $\underline{v}_{i} \in V_{i}$, and that this P is a projection.
DEF This P is called the projection onto V_{1} along V_{0}.
(f) Let $V_{0}=\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\right\} V_{1}=\operatorname{Span}\left\{\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$ so that $\mathbb{R}^{3}=V_{0} \oplus V_{1}$ [check for yourself]. Let P be the projection onto V_{1} along V_{0}. Find the matrix of P with respect to the standard basis of \mathbb{R}^{3}.

The Quantum Harmonic Oscillator, I

PRAC In physics a "parity operator" is a map $R \in \operatorname{End}(V)$ such that $R^{2}=\operatorname{Id}_{V}$.
RMK This is problem 5, but it is not for submission.
(a) Show that $\pm \mathrm{Id}_{V}$ are (uninteresting) parity operators.
(b) For parts (b)-(d) fix a parity operator R. Show that its eigenvalues are in $\{ \pm 1\}$ and let $V_{ \pm}$be the corresponding eigenspaces.
(c) Show that $\frac{I+R}{2}, \frac{I-R}{2}$ are the projections onto V_{+}, V_{-}along the other subspace, respectively.
(d) Conclude that $V=V_{+} \oplus V_{-}$and hence that every parity operator is diagonalizable.
(e) Let X be a set and let $\tau: X \rightarrow X$ be an involution: a map such that $\tau^{2}=\operatorname{Id}_{X}$. Let $R_{\tau} \in \operatorname{End}\left(\mathbb{R}^{X}\right)$ be the map $f \mapsto f \circ \tau$. Show that P_{τ} is a parity operator.
(f) Let $X=\mathbb{R}, \tau(x)=-x$. Explain how (b)-(e) relate to the concepts of odd and even functions.
6. Let $V=\left\{p(x) e^{-x^{2} / 2} \mid p \in \mathbb{R}[x]\right\}$ and for $n \geq 1$ let $V_{n}=\left\{p(x) e^{-x^{2} / 2} \mid p \in \mathbb{R}[x]^{<n}\right\} \subset V$. Let $H \in$ $C^{\infty}(\mathbb{R})$ be the operator ("quantum Hamiltonian") $H=-D^{2}+M_{x^{2}}$. In other words we have $H f=$ $-\frac{d^{2} f}{d x^{2}}+x^{2} f$.
PRAC Show that $V_{n} \subset V$ are subspaces of $C^{\infty}(\mathbb{R})$, the space of infinitely differentiable functions.
(a) Show that $H V \subset V$ and $H V_{n} \subset V_{n}$.
(b) Let $H_{n}=H \upharpoonright_{V_{n}} \in \operatorname{End}\left(V_{n}\right)$ be the restriction of H to V_{n}. Show that H_{n} has an upper-triangular basis with respect to an appropriate basis of V_{n} and determine its eigenvalues.
(c) Show that H_{n} is diagonable.
(d) Show that $H R=R H$ for the parity operator of 5(f).
(*e) Show that every eigenfunction of H_{n} is either even or odd. Which is which?
(f) Show that $V=\left\{p(x) e^{-x^{2} / 2} \mid p \in \mathbb{R}[x]\right\}$ has a basis of eigenfunctions of H, and that each eigenfunction is either even or odd.

Supplementary problem: Nilpotent operators

A Let $N \in \operatorname{End}(V)$.
(a) Define subspaces $W_{k} \subset V$ by $W_{0}=V$ and $W_{k+1}=N W_{k}$. Show that $W_{k}=\operatorname{Im}\left(N^{k}\right)$.
(b) Suppose that $W_{k+1} \subsetneq W_{k}$ for $0 \leq k \leq K-1$. Show that $\operatorname{dim} V \geq K$.
(c) Show that either the sequence $\left\{W_{k}\right\}_{k=0}^{\infty}$ reaches zero after at most $\operatorname{dim} V$ steps or there is a nonzero subspace $W \subset V$ such that $N W=W$.
(d) Suppose that $N^{k}=0$ for some large k. Show that $N^{n}=0$ where $n=\operatorname{dim} V$.

DEF N such that $N^{k}=0$ is called nilpotent
(e) Find the spectrum of a nilpotent operator.

